Literature review suggests a close relationship between estrogen and apolipoprotein E (ApoE) in the central nervous system. Epidemiology studies show that estrogen replacement therapy (ERT) decreases the morbidity from several chronic neurological diseases. Alleles of ApoE modify the risk for and progression of the same diseases. ApoE levels in the rodent brain vary during the estrous cycle and increase after 17beta-estradiol administration. Both estradiol and ApoE3, the most common isoform of human ApoE, increase the extent of neurite outgrowth in culture. Combined, these observations suggest a common mechanism whereby estrogen may increase ApoE levels to facilitate neurite growth. We tested this hypothesis by characterizing the effects of estradiol and ApoE isoforms on neurite outgrowth in cultured adult mouse cortical neurons. Estradiol increased ApoE levels and neurite outgrowth. ApoE2 increased neurite length more so than ApoE3 in the presence of estradiol. Estradiol had no effect on neurite outgrowth from mice lacking the ApoE gene or when only ApoE4, the isoform of ApoE that is associated with increased risk of neurological disease, was exogenously supplied. Cultures from mice transgenic for human ApoE3 or ApoE4 showed the same isoform-specific effect. Neuronal internalization of recombinant human ApoE3 was greater than ApoE4, and ApoE3 was more effective than ApoE4 in facilitating neuronal uptake of a fatty acid. We conclude that estradiol facilitates neurite growth through an ApoE-dependent mechanism. The effects of ERT on chronic neurological diseases may vary with ApoE genotype. The clinical use of ERT may require ApoE genotyping for optimal efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2003-1707DOI Listing

Publication Analysis

Top Keywords

neurite outgrowth
16
apoe levels
12
apoe
11
neurite
8
facilitates neurite
8
cultured adult
8
adult mouse
8
mouse cortical
8
cortical neurons
8
chronic neurological
8

Similar Publications

Cd99l2 regulates excitatory synapse development and restrains immediate-early gene activation.

Cell Rep

January 2025

Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Transplantation Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea. Electronic address:

Cd99 molecule-like 2 (Cd99l2) is a type I transmembrane protein that plays a role in the transmigration of leukocytes across vascular endothelial cells. Despite its high expression in the brain, the role of Cd99l2 remains elusive. We find that Cd99l2 is expressed primarily in neurons and positively regulates neurite outgrowth and the development of excitatory synapses.

View Article and Find Full Text PDF

IGF1 enhances memory function in obese mice and stabilizes the neural structure under insulin resistance via AKT-GSK3β-BDNF signaling.

Biomed Pharmacother

January 2025

Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea. Electronic address:

Obesity is a prevalent metabolic disorder linked to insulin resistance, hyperglycemia, increased adiposity, chronic inflammation, and cognitive dysfunction. Recent research has focused on developing therapeutic strategies to mitigate cognitive impairment associated with obesity. Insulin growth factor-1 (IGF1) deficiency is linked to insulin resistance, glucose intolerance, and the progression of obesity-related central nervous system (CNS) disorders.

View Article and Find Full Text PDF

Neurotrophic factors are critical for establishing functional connectivity in the nervous system and sustaining neuronal survival through adulthood. As the first neurotrophic factor purified, nerve growth factor (NGF) is extensively studied for its prolific role in axon outgrowth, pruning, and survival. Applying NGF to diseased neuronal tissue is an exciting therapeutic option and understanding how NGF regulates local axon susceptibility to pathological degeneration is critical for exploiting its full potential.

View Article and Find Full Text PDF

SH2B1β is a multifunctional scaffold protein that modulates cytoskeletal processes such as cellular motility and neurite outgrowth. To identify novel SH2B1β-interacting proteins involved in these processes, a yeast two-hybrid assay was performed. The C-terminal 159 residues of the cytoskeleton structural protein, βIIΣ1-spectrin, interacted with the N-terminal 260 residues of SH2B1β, a region implicated in SH2B1β enhancement of cell motility and localization at the plasma membrane.

View Article and Find Full Text PDF

The development of potent glycogen synthase kinase-3β (GSK-3β) inhibitor has been increasingly recognized as the candidate treatment against the multifactorial pathogenic mechanism of Alzheimer's disease (AD). This study prepared various new pyrrolo[2,3-b]pyridine derivatives, evaluated the anti-AD activities and detected the security based on the structure-guided rational design. Our results indicated that many pyrrolo[2,3-b]pyridine derivatives had strong GSK-3β inhibitory activities, particularly compounds 41, 46 and 54, with the half maximal inhibitory concentrations (IC) of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!