Dopamine (DA) modulates apoptosis in neuronal and non-neuronal cells, and dopaminergic pathways contribute to neurodegenerative disease. Human lymphocytes express dopaminergic receptors and DA transporters, and synthesize endogenous catecholamines, which may modulate apoptosis in these cells. In the present study, dopaminergic modulation of apoptosis was investigated in human peripheral blood mononuclear cells (PBMCs) obtained from healthy donors. Twenty-four-hour DA reduced at 0.1-5 x 3 10(-6) M and enhanced at 1-5 x 310(-4) M spontaneous apoptosis. DA 1 x 310(-6) M was inhibited by the D1-like receptor antagonist SCH 23390 1 x 310(-6) M, but not by the D2-like receptor antagonists domperidone 1 x 3 10(-6) M or haloperidol 1 x 3 10(-6) M, while the effect of DA 5 x 3 10(-4) M was prevented by the antioxidants glutathione 5-10 mM or N-acetyl-l-cysteine 1-10 mM. Intracellular reactive oxygen species were respectively reduced and increased by 1-3 h incubation with DA 0.1-10 x 3 10(-6) M and 1-5x310(-4) M. Twenty-four-hour DA 1 x 3 10(-6) M or 5 x 3 10(-4) M had no effect on PBMC expression of Cu/Zn superoxide dismutase or Bcl-2; however, DA 5 x 3 10(-4) M decreased caspase-3 activity. In human PBMCs, DA seems to promote apoptosis through oxidative mechanisms but may also result in cell rescue from apoptotic death possibly through activation of D1-like receptors. The dual effect of DA on human PBMCs closely resembles that on striatal neurons. Lymphocytes of patients with Parkinson's disease may show reduced DA content and impaired DA transporter immunoreactivity. Human PBMCs may thus represent a simple and readily accessible model to study DA-related mechanisms relevant for neurodegenerative disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1196/annals.1299.124 | DOI Listing |
Cancer Immunol Immunother
January 2025
Université Paris-Saclay, UVSQ, EA 4340 BECCOH, Boulogne-Billancourt, France.
Most of advanced non-small cell lung cancer (NSCLC) patients will experience tumor progression with immunotherapy (IO). Preliminary data suggested an association between high plasma HGF levels and poor response to IO in advanced NSCLC. Our study aimed to evaluate further the role of the HGF/MET pathway in resistance to IO in advanced NSCLC.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
UK Dementia Research Institute at Cardiff University, Cardiff, South Glamorgan, United Kingdom.
Background: Genome-wide association studies (GWAS) in Alzheimer's disease (AD) implicate complement in pathogenesis. Complement receptor 1 (CR1; CD35) is a top AD-associated GWAS hit; the long variant, CR1*2, associates with risk. The roles of CR1 in brain and how variants influence AD risk are poorly understood.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurology, Columbia University, New York, NY, USA.
Background: Lipid dysregulation is a known feature of Alzheimer's Disease. Importantly, alterations in lipids pathways affect immune responses in cells like microglia, which have been shown to accumulate cholesterol in both aging and neurodegeneration. Recently, the presence of TDP-43 inclusions has been linked to increased severity of cognitive impairment in AD patients.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Columbia University, New York, NY, USA.
Background: Genome-wide association studies (GWAS) have identified genetic loci that robustly associate with Alzheimer's Disease (AD), many of which are preferentially or exclusively expressed in innate immune cells. Among the identified AD risk genes is CD33: a transmembrane, sialic acid-binding protein expressed on the surface of myeloid cells including microglia, the innate immune cells of the CNS. The function of microglia is highly responsive to and regulated by metabolic changes, which allows them to rapidly change phenotype and maintain brain health.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
John P. Hussman Institute for Human Genomics, Miller School of Medicine, Miami, FL, USA.
Background: Pathogenic variants in Presenilin-1 (PSEN1) cause autosomal dominant forms of early-onset Alzheimer disease (AD). Despite the high penetrance, substantial interindividual variability in age-of-onset (AOO) is observed among different PSEN1 mutations. Attempting to understand the molecular mechanisms leading to variability in AOO in PSEN1 mutations, we focused on three mutations located at codon 206 (G206A, G206S and G206D) of this gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!