Prodigiosin induces apoptosis by acting on mitochondria in human lung cancer cells.

Ann N Y Acad Sci

Departament de Biologia Cellular i Anatomia Patològica, Cancer Cell Biology Research Group, Universitat de Barcelona, Spain.

Published: December 2003

AI Article Synopsis

  • Prodigiosin (PG), a compound from Serratia marcescens, shows strong cancer-fighting properties and can suppress the immune system.
  • The study focused on how mitochondria contribute to PG's ability to trigger apoptosis (cell death) in GLC4 lung cancer cells, using Hoechst 33342 staining for analysis.
  • Results indicated that PG activates both caspase-dependent and caspase-independent pathways to induce apoptosis.

Article Abstract

Prodigiosin (PG) is a secondary metabolite, isolated from a culture of Serratia marcescens, which has shown potent cytotoxicity against various human cancer cell lines as well as immunosuppressive activity. The purpose of this study was to evaluate the role of mitochondria in PG-induced apoptosis. Therefore, we evaluated the apoptotic action of PG in GLC4 small cell lung cancer cell line by Hoechst 33342 staining. In these cells, we examined mitochondrial apoptosis-inducing factor (AIF) and cytochrome c (cyt c) release to the cytosol in PG time-response studies. These findings suggest that PG induces apoptosis in both caspase-dependent and caspase-independent pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1196/annals.1299.030DOI Listing

Publication Analysis

Top Keywords

induces apoptosis
8
lung cancer
8
cancer cell
8
prodigiosin induces
4
apoptosis acting
4
acting mitochondria
4
mitochondria human
4
human lung
4
cancer cells
4
cells prodigiosin
4

Similar Publications

The therapeutic role of naringenin nanoparticles on hepatocellular carcinoma.

BMC Pharmacol Toxicol

January 2025

Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.

Background: Naringenin, a flavonoid compound found in citrus fruits, possesses valuable anticancer properties. However, its potential application in cancer treatment is limited by poor bioavailability and pharmacokinetics at tumor sites. To address this, Naringenin nanoparticles (NARNPs) were prepared using the emulsion diffusion technique and their anticancer effects were investigated in HepG2 cells.

View Article and Find Full Text PDF

Objective: This study aims to explore the potential role of mesenchymal stem cells (MSCs) in the treatment of osteoarthritis (OA), particularly the function of the NOTCH1 signaling pathway in maintaining the stemness of MSCs and in chondrocyte differentiation.

Methods: Utilizing diverse analytical techniques on an osteoarthritis dataset, we unveil distinct gene expression patterns and regulatory relationships, shedding light on potential mechanisms underlying the disease. Techniques used include the culture of MSCs, induction of differentiation into chondrocytes, establishment of stable cell lines, Western Blot, and immunofluorescence.

View Article and Find Full Text PDF

Objectives: SOX10 is crucially implicated in various cancer, yet the regulatory role in pancreatic cancer (PC) remains enigmatic. Underlying molecular mechanisms of SOX10 in PC were explored in our study.

Methods: Relationships between SOX10 and immune landscape were estimated using bioinformatic approaches.

View Article and Find Full Text PDF

Mitochondrial carrier homolog 2 (MTCH2) is a regulator of apoptosis, mitochondrial dynamics, and metabolism. Loss of MTCH2 results in mitochondrial fragmentation, an increase in whole-body energy utilization, and protection against diet-induced obesity. In this study, we used temporal metabolomics on HeLa cells to show that MTCH2 deletion results in a high ATP demand, an oxidized cellular environment, and elevated utilization of lipids, amino acids, and carbohydrates, accompanied by a decrease in several metabolites.

View Article and Find Full Text PDF

Donafenib is an improved version of sorafenib in which deuterium is substituted into the drug's chemical structure, enhancing its stability and antitumor activity. Donafenib exhibits enhanced antitumor activity and better tolerance than sorafenib in preclinical and clinical studies. However, the specific mechanism of its effect on hepatocellular carcinoma has not been reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!