Gap junctions, specialised membrane structures that mediate cell-to-cell communication in almost all tissues, are composed of channel-forming integral membrane proteins termed connexins. The activity of these intercellular channels is closely regulated, particularly by intramolecular modifications as phosphorylations of proteins by protein kinases, which appear to regulate the gap junction at several levels, including assembly of channels in the plasma membrane, connexin turnover as well as directly affecting the opening and closure ("gating") of channels. The regulation of membrane channels by protein phosphorylation/dephosphorylation processes commonly requires the formation of a multiprotein complex, where pore-forming subunits bind to auxiliary proteins (e.g. scaffolding proteins, catalytic and regulatory subunits), that play essential roles in channel localisation and activity, linking signalling enzymes, substrates and effectors into a structure frequently anchored to the cytoskeleton. The present review summarises the up-to-date progress regarding the proteins capable of interacting or at least of co-localising with connexins and their functional importance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2003.10.022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!