Induction of corticostriatal LTP by 3-nitropropionic acid requires the activation of mGluR1/PKC pathway.

Neuropharmacology

Interactions Cellulaires, Neurodégénérescence et Neuroplasticité (IC2N), CNRS, 13402 Marseille Cedex 20, France.

Published: May 2004

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder typically affecting individuals in midlife. HD is characterized by the selective loss of striatal spiny neurons, while large cholinergic interneurons are spared. An impaired mitochondrial complex II (succinate dehydrogenase, SD) activity is known as a prominent metabolic alteration in HD. Accordingly, chronic treatment with 3-nitropropionic acid (3-NP), an irreversible SD inhibitor, mimics motor abnormalities and pathology of HD in several animal models. We have previously shown that in vitro application of 3-NP induces a long-term potentiation (LTP) of corticostriatal synaptic transmission through NMDA glutamate receptor. Since this 3-NP-induced LTP (3-NP-LTP) is shown by striatal spiny neurons, but not by cholinergic interneurons, it might play a role in the regional and cell type-specific neuronal death observed in HD. Here we investigate the role of group I metabotropic glutamate receptors (mGluRs) in the induction of 3-NP-LTP. We report that selectively blocking mGluR1, but not mGluR5, suppresses 3-NP-LTP induction. Moreover, we show that a PKC-mediated mechanism is involved in the formation of 3-NP-LTP. Characterizing the cellular mechanisms underlying 3-NP-LTP may provide new insights to better understand the processes leading to the selective neuronal loss observed in HD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2003.11.021DOI Listing

Publication Analysis

Top Keywords

3-nitropropionic acid
8
striatal spiny
8
spiny neurons
8
cholinergic interneurons
8
3-np-ltp
5
induction corticostriatal
4
corticostriatal ltp
4
ltp 3-nitropropionic
4
acid requires
4
requires activation
4

Similar Publications

3-Nitropropionic acid exposure inhibits embyro development by disrupting mitochondrial function and inducing oxidative stress.

Chem Biol Interact

January 2025

Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu, 233000, China. Electronic address:

3-Nitropropionic acid (3-NP) is a naturally occurring mycotoxin produced by various species of fungi and plants. However, the potential impact of 3-NP exposure on reproductive health remains unclear. To address this gap, we conducted an in vitro study to investigate the toxic effects of 3-NP on the developmental processes of mouse embryos.

View Article and Find Full Text PDF

Mycotoxin exposure from contaminated food is a significant global health issue, particularly among vulnerable children. Given limited data on mycotoxin exposure among Namibian children, this study investigated mycotoxin types and levels in foods, evaluated dietary mycotoxin exposure from processed cereal foods in children under age five from rural households in Oshana region, Namibia. Mycotoxins in cereal-based food samples (n = 162) (mahangu flour (n = 35), sorghum flour (n = 13), mahangu thin/thick porridge (n = 54), oshikundu (n = 56), and omungome (n = 4)) were determined by liquid chromatography-tandem mass spectrometry.

View Article and Find Full Text PDF

Background: Huntington disease (HD), a neurodegenerative autosomal dominant disorder, is characterized by involuntary choreatic movements with cognitive and behavioral disturbances. Up to now, no therapeutic strategies are available to completely ameliorate the progression of HD. has various pharmacologic effects such as antioxidant and anti-inflammatory activities.

View Article and Find Full Text PDF

Exploring the role of Cdk5 on striatal synaptic plasticity in a 3-NP-induced model of early stages of Huntington's disease.

Front Mol Neurosci

November 2024

Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, Unidad de Biomedicina, FES-I, Universidad Nacional Autónoma de México, Mexico City, Mexico.

Article Synopsis
  • Impaired mitochondrial function is linked to neurodegenerative diseases like Huntington's disease (HD), with 3-NP as a toxin that induces relevant cellular changes in the striatum.
  • Cyclin-dependent kinase 5 (Cdk5) is a key signaling molecule involved in both cellular pathology and synaptic plasticity, prompting investigations into its role in corticostriatal changes under 3-NP treatment.
  • The study reveals that while Cdk5 levels increase with 3-NP treatment, it affects long-term depression (LTD) and long-term potentiation (LTP) differently, suggesting that Cdk5 may alter signaling pathways that affect neuronal activity during the early phases of neurodegeneration.
View Article and Find Full Text PDF

Unveiling detoxifying symbiosis and dietary influence on the Southern green shield bug microbiota.

FEMS Microbiol Ecol

November 2024

Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands.

Article Synopsis
  • The Southern green shield bug, Nezara viridula, is an invasive pest that threatens crops and global food security due to its feeding habits.
  • This study investigates how the bug's microbial community helps it detoxify the harmful plant metabolite 3-nitropropionic acid (NPA), finding that six out of eight strains can detoxify this toxin.
  • Additionally, it examines how diet affects the gut microbes of N. viridula, revealing that a single-plant diet changes microbial composition and that core microbes support each other while inhibiting transient ones, enhancing the bug's resilience to plant defenses.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!