Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The lateralized readiness potential (LRP) is considered to reflect motor activation and has been used extensively as a tool in elucidating cognitive processes. In the present study, we attempted to more precisely determine the origins of the LRP within the cognitive system. The response selection and motor programming stages were selectively manipulated by varying symbolic stimulus response compatibility and the time to peak force of an isometric finger extension response. Stimulus response compatibility and time to peak force affected response latency, as measured in the electromyogram, in a strictly additive fashion. The effects of the experimental manipulations on stimulus- and response-synchronized LRPs indicate that the LRP starts after the completion of response-hand selection and at the beginning of motor programming. These results allow a more rigorous interpretation of LRP findings in basic and applied research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1469-8986.2004.00150.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!