Induction of high affinity phosphate transporter in the duckweed Spirodela oligorrhiza.

Physiol Plant

Biological Laboratory, Hakodate College, Hokkaido University of Education, Hachiman-cho, Hakodate 040-8567, Japan.

Published: February 2004

Duckweed plants (Spirodela oligorrhiza) grown under phosphate (Pi)-deficient conditions (- P plants) exhibited more than 50-fold higher Pi uptake activity than plants grown under Pi-sufficient conditions (+ P plants). The Pi uptake activity of - P plants measured using (32)Pi was significantly inhibited by carbonylcyanide m-chlorophenylhydrazone, indicating that Pi uptake is energized by the electrochemical proton gradient across the plasma membrane (PM). When Pi uptake was examined at various concentrations of Pi, more active uptake of Pi was observed in - P plants than in + P plants, irrespective of the Pi concentrations. An immunoblot analysis of the PM proteins using antiserum against the conserved sequence of the high-affinity Pi transporter recognized the occurrence and large accumulation of a novel protein band at 48 kDa in - P plants. The protein was almost completely extracted with chloroform-methanol (2:1, v/v), but only a trace amount of the protein was detected in + P plants. Immunohistochemical studies of plant roots using the same antiserum demonstrated a large accumulation of high-affinity Pi transporters at the outermost cortical cells of - P plants, but not of + P plants. When an immunoblot analysis of PM proteins was performed using antiserum against the PM H(+)-ATPase, a positive band of about 96 kDa was detected in both plants with a similar signal intensity. Furthermore, ATP-hydrolytic and ATP-dependent H(+)-transporting activities of PM H(+)-ATPase in - P plants were not higher than those in + P plants. However, kinetic analyses showed that the PM H(+)-ATPase in - P plants had a lower K(m) value and a higher coupling efficiency between ATP hydrolysis and H(+) pumping than the corresponding values in + P plants. These results suggest that the significant stimulation of Pi uptake in - P plants may be due mainly to the induction and accumulation of the high-affinity Pi transporter in the PM, and that the electrochemical proton gradient across the PM may be generated by the high-ATP-affinity and energy-efficient H(+) pump in - P plants. This would facilitate the acquisition of Pi in S. oligorrhiza under Pi-depleted conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.0031-9317.2004.0231.xDOI Listing

Publication Analysis

Top Keywords

plants
18
spirodela oligorrhiza
8
conditions plants
8
uptake activity
8
activity plants
8
electrochemical proton
8
proton gradient
8
plants plants
8
immunoblot analysis
8
analysis proteins
8

Similar Publications

Rac/Rop proteins, a kind of unique small GTPases in plants, play crucial roles in plant growth and development and in response to abiotic and biotic stresses. However, it is poorly understood whether cotton Rac/Rop protein genes are involved in mediating cotton resistance to Verticillium dahliae. Here, we focused on the function and mechanism of cotton Rac/Rop gene GhRac9 in the defense response to Verticillium dahliae infection.

View Article and Find Full Text PDF

Synergistic effects of GmLFYa and GmLFYb on Compound Leaf Development in Soybean.

Physiol Plant

January 2025

School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

Legume leaves exhibit diverse compound forms, with various regulatory mechanisms underlying the development. The transcription factor-encoding KNOXI genes are required to promote leaflet initiation in most compound-leafed angiosperms. In non-IRLC (inverted repeat-lacking clade) legumes, KNOXI are expressed in compound leaf primordia but not in others (IRLC).

View Article and Find Full Text PDF

Photosynthetic microalgae are promising green cell factories for the sustainable production of high-value chemicals and biopharmaceuticals. The chloroplast organelle is being developed as a chassis for synthetic biology as it contains its own genome (the plastome) and some interesting advantages, such as high recombinant protein titers and a diverse and dynamic metabolism. However, chloroplast engineering is currently hampered by the lack of standardized cloning tools and Design-Build-Test-Learn workflows to ease genomic and metabolic engineering.

View Article and Find Full Text PDF

Endophytes have significant prospects for applications beyond their existing utilization in agriculture and the natural sciences. They form an endosymbiotic relationship with plants by colonizing the root tissues without detrimental effects. These endophytes comprise several microorganisms, including bacteria and fungi.

View Article and Find Full Text PDF

Putranjiva roxburghii is an important medicinal plant utilized for remedy of female reproductive ailments. Its seed extract is being used as a uterine health booster due to the presence of several pharmaceutically important phytochemicals. However, the presence of phytochemicals in its leaf is still unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!