Poly(L-lysine)-modified silica nanoparticles for the delivery of antisense oligonucleotides.

Biotechnol Appl Biochem

Cancer Research Institute, XiangYa School of Medicine, Central South University, ChangSha, HuNan 410078, People's Republic of China.

Published: April 2004

Silica nanoparticles were prepared in a microemulsion system, using polyoxyethylene nonylphenyl ether/cyclohexane/ammonium hydroxide. The surface charge of the particle was modified with PLL [poly(L-lysine)]. PAGE demonstrated the ability of PMS-NP (PLL-modified silica nanoparticles) to bind and protect antisense ODNs (oligonucleotides). The intracellular localization of FITC-labelled ODN was investigated by fluorescence microscopy. The results demonstrated that ODN could be delivered to cytoplasm. Flow-cytometry analysis showed a 20-fold enhancement of ODN delivered by PMS-NP compared with free ODN for a serum-free medium. Blocking efficacy of c- myc antisense ODN, delivered by PMS-NP, was examined in HNE1 and HeLa cell lines. Significant down-regulation of c- myc mRNA levels was observed in both the cell lines. However, the cellular uptake efficiency and antisense effects on target gene decreased in the presence of serum-containing medium. The analysis of the filtration assay showed that PMS-NP interacted with serum proteins. These results indicated that PMS-NP was a suitable delivery vector for antisense ODN, although its delivery efficiency decreased in the presence of a serum-containing medium.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BA20030077DOI Listing

Publication Analysis

Top Keywords

silica nanoparticles
12
odn delivered
12
delivered pms-np
8
antisense odn
8
cell lines
8
decreased presence
8
presence serum-containing
8
serum-containing medium
8
odn
6
antisense
5

Similar Publications

In this study, we developed a novel composite catalytic hydrogel, which integrates excellent mechanical properties, catalytic activity, and sensing performance. Discarded hydrogel sensors are reused as templates for in-situ generation of metal nanoparticles, and multifunctional hydrogels combining sensing and catalysis are realized. Polyacrylamide (PAM) provides a three-dimensional network structure, while octadecyl methacrylate (SMA) acts as a hydrophobic association center, enhancing the structural stability of the hydrogel.

View Article and Find Full Text PDF

Design and engineering of microenvironments of supported catalysts toward more efficient chemical synthesis.

Adv Colloid Interface Sci

December 2024

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:

Catalytic species such as molecular catalysts and metal catalysts are commonly attached to varieties of supports to simplify their separation and recovery and accommodate various reaction conditions. The physicochemical microenvironments surrounding catalytic species play an important role in catalytic performance, and the rational design and engineering of microenvironments can achieve more efficient chemical synthesis, leading to greener and more sustainable catalysis. In this review, we highlight recent works addressing the topic of the design and engineering of microenvironments of supported catalysts, including supported molecular catalysts and supported metal catalysts.

View Article and Find Full Text PDF

Purpose: Nanoparticles are highly efficient vectors for ferrying contrast agents across cell membranes, enabling ultra-sensitive in vivo tracking of single cells with positron emission tomography (PET). However, this approach must be fully characterized and understood before it can be reliably implemented for routine applications.

Methods: We developed a Langmuir adsorption model that accurately describes the process of labeling mesoporous silica nanoparticles (MSNP) with Ga.

View Article and Find Full Text PDF

Nanodots of Transition Metal Sulfides, Carbonates, and Oxides Obtained Through Spontaneous Co-Precipitation with Silica.

Nanomaterials (Basel)

December 2024

Material Science, BASF SE, RGA/BM-B007, Carl-Bosch-Str. 38, D-67056 Ludwigshafen, Germany.

The controlled formation and stabilization of nanoparticles is of fundamental relevance for materials science and key to many modern technologies. Common synthetic strategies to arrest growth at small sizes and prevent undesired particle agglomeration often rely on the use of organic additives and require non-aqueous media and/or high temperatures, all of which appear critical with respect to production costs, safety, and sustainability. In the present work, we demonstrate a simple one-pot process in water under ambient conditions that can produce particles of various transition metal carbonates and sulfides with sizes of only a few nanometers embedded in a silica shell, similar to particles derived from more elaborate synthesis routes, like the sol-gel process.

View Article and Find Full Text PDF

Exploring Gluconamide-Modified Silica Nanoparticles of Different Sizes as Effective Carriers for Antimicrobial Photodynamic Therapy.

Nanomaterials (Basel)

December 2024

Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV-EHU, Apartado 644, 48080 Bilbao, Spain.

Antimicrobial resistance (AMR), a consequence of the ability of microorganisms, especially bacteria, to develop resistance against conventional antibiotics, hampering the treatment of common infections, is recognized as one of the most imperative health threats of this century. Antibacterial photodynamic therapy (aPDT) has emerged as a promising alternative strategy, utilizing photosensitizers activated by light to generate reactive oxygen species (ROS) that kill pathogens without inducing resistance. In this work, we synthesized silica nanoparticles (NPs) of different sizes (20 nm, 80 nm, and 250 nm) functionalized with the photosensitizer Rose Bengal (RB) and a gluconamide ligand, which targets Gram-negative bacteria, to assess their potential in aPDT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!