Acronycine, a natural alkaloid originally extracted from the bark of the Australian ash scrub Acronychia baueri, has shown a significant antitumor activity in animal models. Acronycine has been tested against human cancers in the early 1980s, but the clinical trials showed modest therapeutic effects and its development was rapidly discontinued. In order to optimize the antineoplastic effect, different benzoacronycine derivatives were synthesized. Among those, the di-acetate compound S23906-1 was recently identified as a promising anticancer drug candidate and a novel alkylating agent specifically reacting with the exocylic 2-NH2 group of guanines in DNA. The study of DNA bonding capacity of acronycine derivatives leads to the identification of the structural requirements for DNA alkylation. In nearly all cases, the potent alkylating agents, such as S23906-1, were found to be much more cytotoxic than the unreactive analogs such as acronycine itself or diol derivatives. Alkylation of DNA by the monoacetate derivative S28687-1, which is a highly reactive hydrolysis metabolite of S23906-1, occurs with a marked preference for the N2 position of guanine. Other bionucleophiles can react with S23906-1. The benzacronycine derivatives, which efficiently alkylate DNA, also covalently bind to the tripeptide glutathione (GSH) but not to the oxidized product glutathione disulfide. Here we review the reactivity of S23906-1 and some derivatives toward DNA and GSH. The structure-activity relationships in the benzacronycine series validate the reaction mechanism implicating DNA as the main molecular target. S23906-1 stands as the most promising lead of a medicinal chemistry program aimed at discovering novel antitumor drugs based on the acronycine skeleton.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1568011043482115DOI Listing

Publication Analysis

Top Keywords

novel antitumor
8
dna
8
alkylating agents
8
benzacronycine series
8
s23906-1
6
acronycine
5
derivatives
5
design novel
4
antitumor dna
4
dna alkylating
4

Similar Publications

Esophageal cancer (EC) is one of the most common highly malignant tumors of the digestive system, with a poor prognosis under current treatment regimens. Nucleolin (NCL) is overexpressed in many tumors, and drugs specifically targeting NCL may offer a promising strategy for treating esophageal cancer. Here, we designed and prepared a novel aptamer-conjugated drug targeting NCL by AS1411 aptamer-human serum albumin (HSA)-the apoprotein of lidamycin (LDP)-active enediyne chromophore (AE), in order to achieve targeted treatment of esophageal cancer.

View Article and Find Full Text PDF

Background: Polyclonal autologous T cells that are epigenetically reprogrammed through mTOR inhibition and IFN-α polarization (RAPA-201) represent a novel approach to the adoptive T cell therapy of cancer. Ex vivo inhibition of mTOR results causes a shift towards T central memory (T) whereas ex vivo IFN-α promotes type I cytokines, with each of these functions known to enhance the adoptive T cell therapy of cancer. Rapamycin-resistant T cells polarized for a type II cytokine phenotype were previously evaluated in the allogeneic transplantation context.

View Article and Find Full Text PDF

Abiraterone acetate fixed-dosed combinations with ibuprofen-based therapeutic eutectic and deep eutectic solvents.

Int J Pharm

January 2025

University of Applied Sciences and Arts Northwest. Switzerland, School of Life Sciences, Institute of Pharma Technology, Hofackerstr. 30 CH-4132 Muttenz, Switzerland. Electronic address:

In recent years, deep eutectic solvents (DESs) with their outstanding solubilization properties have emerged as strong candidates for oral enabling formulations of poorly soluble drugs. This study explores the use of drug-based therapeutic DESs (THEDESs) to solubilize a poorly soluble compound with the aim of providing a fixed-dose combination of two complementary therapeutic agents. Specifically, potential anticancer effects of ibuprofen (IBU) are harnessed in a novel type of THEDES to dissolve higher amounts of abiraterone acetate (AbAc), an antitumor agent.

View Article and Find Full Text PDF

Exploiting synthetic lethality in PDAC with antibody drug conjugates and ATR inhibition.

Eur J Med Chem

January 2025

Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China. Electronic address:

Pancreatic ductal adenocarcinoma (PDAC) remains a highly lethal malignancy with poor prognosis. Antibody-drug conjugates (ADCs) and their combinations with various anti-tumor drugs have made great progress. Camptothecin, and its derivatives (Dxd, SN-38 or exatecan) targeted TOP1 are effective payloads due to their potent anti-tumor activity.

View Article and Find Full Text PDF

tRNA m1A modification regulates cholesterol biosynthesis to promote antitumor immunity of CD8+ T cells.

J Exp Med

March 2025

Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Activation of CD8+ T cells necessitates rapid metabolic reprogramming to fulfill the substantial biosynthetic demands of effector functions. However, the posttranscriptional mechanisms underpinning this process remain obscure. The transfer RNA (tRNA) N1-methyladenine (m1A) modification, essential for tRNA stability and protein translation, has an undefined physiological function in CD8+ T cells, particularly in antitumor responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!