We have implemented five drug-like filters, based on 1D and 2D molecular descriptors, and applied them to characterize the drug-like properties of commercially available chemical compounds. In addition to previously published filters (Lipinski and Veber), we implemented a filter for medicinal chemistry tractability based on lists of chemical features drawn up by a panel of medicinal chemists. A filter based on the modeling of aqueous solubility (>1 microM) was derived in-house, as well as another based on the modeling of Caco-2 passive membrane permeability (>10 nm/s). A library of 2.7 million compounds was collated from the 23 compound suppliers and analyzed with these filters, highlighting a tendency toward highly lipophilic compounds. The library contains 1.6 M unique structures, of which 37% (607,223) passed all five drug-like filters. None of the 23 suppliers provides all the members of the drug-like subset, emphasizing the benefit of considering compounds from various compound suppliers as a source of diversity for drug discovery.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci034260mDOI Listing

Publication Analysis

Top Keywords

drug-like filters
8
based modeling
8
compound suppliers
8
drug-like
5
compounds
5
drug-like annotation
4
annotation duplicate
4
duplicate analysis
4
analysis 23-supplier
4
23-supplier chemical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!