Chemical reactivity as a tool to study carcinogenicity: reaction between estradiol and estrone 3,4-quinones ultimate carcinogens and guanine.

J Chem Inf Comput Sci

Laboratoire de Physique Moléculaire, UMR CNRS 6624, Faculté des Sciences et Techniques, La Bouloie, Université de Franche-Comté, 25030 Besançon, France.

Published: December 2004

In this article we study the chemical reactions between guanine and two ultimate carcinogens, the 3,4-quinone forms of the estrogens estrone (E1) and estradiol (E2). DNA was truncated to guanine, i.e. no deoxyribose moiety was included. Due to a complex reaction that involves proton transfer via water molecules we applied linear free energy relationships rather than computation of the transition state and activation energies. The minima corresponding to reactants and products were obtained on the B3LYP/6-31G(d) level. The effects of hydration were considered using the solvent reaction field of Tomasi and co-workers and the Langevin dipoles model of Florian and Warshel. No significant difference in reaction free energy for the reaction involving estrone and estradiol metabolites was found, despite the fact that for the two substances different carcinogenic activities were reported. Differences in carcinogenicity may be therefore attributed to other types of interactions or reactions such as (i) specific interactions of the carbonyl or hydroxyl group with DNA giving rise to different activation free energies for the reactions, (ii) the reaction of depurination and subsequent effects on the DNA, (iii) enzymatic or nonenzymatic oxidation steps (P450, aromatase, peroxidases, O2) and detoxification reactions (catechol-O-methyl transferase, S-transferase), or (iv) binding of the hormone to its nuclear receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci030424nDOI Listing

Publication Analysis

Top Keywords

ultimate carcinogens
8
estrone estradiol
8
free energy
8
reaction
6
chemical reactivity
4
reactivity tool
4
tool study
4
study carcinogenicity
4
carcinogenicity reaction
4
reaction estradiol
4

Similar Publications

Dioxins rank among the most hazardous persistent organic pollutants, presenting a serious threat due to their long environmental lifespan and capacity for bioaccumulation. This comprehensive review delves into the historical, chemical, and toxicological aspects of dioxins, spotlighting significant incidents such as the Seveso disaster and the repercussions of Agent Orange. The review offers a thorough analysis of the sources of dioxin formation, encompassing natural occurrences like volcanic eruptions and wildfires, alongside man-made activities such as industrial combustion and waste incineration.

View Article and Find Full Text PDF

Revolutionary bamboo crash barriers utilizing sustainable materials for enhanced road safety.

Sci Rep

January 2025

Department of Mechanical Engineering, Government Engineering College, Barton Hill, Thiruvananthapuram, Kerala, India.

Road accidents are a growing concern worldwide, and crash barriers have significantly reduced the severity of these incidents. In its pursuit of developing an eco-friendly crash barrier, India installed the world's first 200 m bamboo crash barrier, on Bombay-Pune Highway. Although its eco-friendly and recyclable design is commendable, using Bambusa balcooa infused with creosote oil and covered with High-density polyethylene (HDPE) raises substantial health and environmental issues due to the presence of toxic and carcinogenic Polycyclic aromatic hydrocarbons (PAHs).

View Article and Find Full Text PDF

The Impact of Aflatoxin B1 on Animal Health: Metabolic Processes, Detection Methods, and Preventive Measures.

Toxicon

January 2025

Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China. Electronic address:

Aflatoxin (AF) is a toxic metabolite produced by the fungus Aspergillus. The various subtypes of AFs include B1, B2, G1, G2, M1, and M2, with Aflatoxin B1 (AFB1) being the most toxic. These AFs are widespread in the environment, particularly in soil and food crops.

View Article and Find Full Text PDF

This review provides a comprehensive global overview of the occurrences, distribution, emissions, and associated risks of perfluoroalkyl acids (PFAAs) in riverine systems across both developed and developing countries including the United States (US), Spain, France, Netherlands, Germany, Pakistan, China, Korea, Vietnam, Italy, and Japan. Data for this review were systematically gathered through a comprehensive and structured search process using various databases, search engines, and academic repositories to identify relevant literature and studies. Human health risks were assessed using recommended United States Environmental Protection Agency (USEPA) models, including estimated daily intake (EDI), hazard risk (HR), and hazard index (HI) for each reported PFAA compound in the studied countries.

View Article and Find Full Text PDF

Objectives: To predict and characterize the three-dimensional (3D) structure of protein arginine methyltransferase 2 (PRMT2) using homology modeling, besides, the identification of potent inhibitors for enhanced comprehension of the biological function of this protein arginine methyltransferase (PRMT) family protein in carcinogenesis.

Materials And Methods: An method was employed to predict and characterize the three-dimensional structure. The bulk of PRMTs in the PDB shares just a structurally conserved catalytic core domain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!