Among lower eukaryotes, glucose repression is a conserved, widely spread mechanism regulating carbon catabolism. The yeast Snf1 kinase, the Mig1 DNA-binding repressor and the Mig1-interacting co-repressor complex Cyc8(Ssn6)-Tup1 are central components of this pathway. Previous experiments suggested that cytoplasmic translocation of Mig1, upon its phosphorylation by Snf1 in the nucleus, is the key regulatory step for releasing glucose repression. In this report we re-evaluate this model. We establish the coordinated repressive action of Mig1 and Cyc8-Tup1 on GAL1 transcription, but we find that Cyc8-Tup1 is not tethered by Mig1 to the promoter DNA. We demonstrate that both negative regulators occupy GAL1 continuously under either repression or activation conditions, although the majority of the Mig1 is redistributed to the cytoplasm upon activation. We show that Snf1-dependent phosphorylation of Mig1 abolishes interaction with Cyc8-Tup1, and we propose that regulation of this interaction, not the Mig1 cytoplasmic localization, is the molecular switch that controls transcriptional repression/de-repression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1299031 | PMC |
http://dx.doi.org/10.1038/sj.embor.7400120 | DOI Listing |
Appl Environ Microbiol
January 2025
Joint Degree Program of Kasetsart University and Yamaguchi University, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan.
Unlabelled: Incomplete oxidation of glucose by sp. strain CHM43 produces gluconic acid and then 2- or 5-ketogluconic acid. Although 2-keto-D-gluconate (2KG) is a valuable compound, it is sometimes consumed by itself via an unknown metabolic pathway.
View Article and Find Full Text PDFAging Cell
January 2025
Molecular Biology and Genetics Unit, Transcription and Disease Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India.
SYNGAP1 is a Ras GTPase-activating protein that plays a crucial role during brain development and in synaptic plasticity. Sporadic heterozygous mutations in SYNGAP1 affect social and emotional behaviour observed in intellectual disability (ID) and autism spectrum disorder (ASD). Although neurophysiological deficits have been extensively studied, the epigenetic landscape of SYNGAP1 mutation-mediated intellectual disability is unexplored.
View Article and Find Full Text PDFCommun Biol
January 2025
Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China.
Carbon catabolite repression (CCR) and de-repression (CCDR) are critical for fungal development and pathogenicity, yet the underlying regulatory mechanisms remain poorly understood in pathogenic fungi. Here, we identify a serine/threonine protein phosphatase catalytic subunit, Pp4c, as essential for growth, conidiation, virulence, and the utilization of carbohydrates and lipids in Magnaporthe oryzae. We demonstrate that the protein phosphatase 4 complex (Pp4c and Smek1 subunits), the AMP-activated protein kinase (AMPK) Snf1, and the transcriptional regulators CreA (repressor) and Crf1 (activator) collaboratively regulate the utilization of non-preferred carbon sources.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
College of Life Sciences, Henan Agricultural University, 218 Ping-an Ave., Zhengzhou, 450046, China.
Background: Aspergillus niger is an important lignocellulose-degrading enzyme-producing strain. Multiple regulatory factors regulate the synthesis of lignocellulose-degrading enzymes in A. niger.
View Article and Find Full Text PDFMol Med
January 2025
Reproduction and Genetics Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 42 Wenhua West Road, Lixia District, Jinan, 250014, Shandong, China.
Background: Polycystic ovary syndrome (PCOS) is a common gynecological disease accompanied by multiple clinical features, including anovulation, hyperandrogenism, and polycystic ovarian morphology, leading to infertility. Formononetin (FMN), which is a major bioactive isoflavone compound in Astragalus membranaceus, exerts anti-inflammatory effects. However, whether FMN is effective in the treatment of PCOS remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!