Human cytomegalovirus (HCMV) infection in osteosarcoma cell line suppresses GM-CSF production by induction of TGF-beta.

Microbiol Immunol

Department of Microbiology and Immunology, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center, Republic of Korea.

Published: July 2004

This study was performed to elucidate the possible mechanism of the disturbance of hemopoiesis by HCMV infection. Saos-2 cells constitutively express mRNA of GM-CSF, and its expression was profoundly decreased by HCMV infection, which required full replication of the virus and was mediated by soluble factors released from the HCMV-infected Saos-2 cells. TGF-beta1 production was statistically and significantly increased from one day after HCMV infection. Expression and production of GM-CSF in Saos-2 cells were restored when a culture supernatant of HCMV-infected Saos-2 cells was reacted with neutralizing anti-TGF-beta antibody. Conclusively, HCMV inhibits GM-CSF expression in Saos-2 cells partly by the increased production of TGF-beta1.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1348-0421.2004.tb03505.xDOI Listing

Publication Analysis

Top Keywords

saos-2 cells
20
hcmv infection
16
gm-csf expression
8
hcmv-infected saos-2
8
hcmv
5
saos-2
5
cells
5
human cytomegalovirus
4
cytomegalovirus hcmv
4
infection
4

Similar Publications

Exploring the Effects of Zingerone on Differentiation and Signalling Pathways in Bone Cell Lines.

Metabolites

December 2024

Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa.

Objective: Ensuring adequate bone health is crucial for preventing conditions such as osteoporosis and fractures. Zingerone, a phytonutrient isolated from cooked ginger, has gained attention for its potential benefits in bone health. This study evaluated the osteoprotective potential of zingerone and its effects on differentiation and signalling pathways using SAOS-2 osteosarcoma and RAW264.

View Article and Find Full Text PDF

Developing a 3D bone model of osteosarcoma to investigate cancer mechanisms and evaluate treatments.

FASEB J

December 2024

Antibody and Vaccine Group, Faculty of Medicine, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton, Southampton, UK.

Osteosarcoma is the most common primary bone cancer, occurring frequently in children and young adults. Patients are treated with surgery and multi-agent chemotherapy, and despite the introduction of mifamurtide in 2011, there has been little improvement in survival for decades. 3-dimensional models offer the potential to understand the complexity of the osteosarcoma tumor microenvironment and aid in developing new treatment approaches.

View Article and Find Full Text PDF

This study aimed to develop silver nanoparticles embedded in poly(ricinoleic acid)-poly(methyl methacrylate)-poly(ethylene glycol) (AgNPsPRici-PMMA-PEG) nanoparticles (NPs) containing caffeic acid (Caff) and tetracycline hydrochloride (TCH) for treating infections and cancer in bone defects. The block copolymers were synthesised via free radical polymerisation. NPs were prepared using the solvent evaporation method and characterised by FTIR, HNMR, SEM, DSC, TGA, and DLS.

View Article and Find Full Text PDF

The simple oxides like titania, zirconia, and ZnO are famous with their antibacterial (or even antimicrobial) properties as well as their biocompatibility. They are broadly used for air and water filtering, in food packaging, in medicine (for implants, prostheses, and scaffolds), etc. However, these application fields can be broadened by switching to the composite multicomponent compounds (for example, titanates) containing in their unit cell, together with oxygen, several different metallic ions.

View Article and Find Full Text PDF

GsMTx-4 venom toxin antagonizes biophysical modulation of metastatic traits in human osteosarcoma cells.

Eur J Cell Biol

December 2024

Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy. Electronic address:

Despite their genetic diversity, metastatic cells converge on similar physical constraints during tumor progression. At the nanoscale, these forces can induce substantial molecular deformations, altering the structure and behavior of cancer cells. To address the challenges of osteosarcoma (OS), a highly aggressive cancer, we explored the mechanobiology of OS cells, in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!