Prion diseases are fatal transmissible neurodegenerative disorders linked to an aberrant conformation of the cellular prion protein (PrP(c)). We have shown previously that the chemical compound suramin induced aggregation of fully matured PrP(c) in post-ER compartments, thereby, activating a post-ER quality control mechanism and preventing cell surface localization of PrP by intracellular re-routing of aggregated PrP from the Golgi/TGN directly to lysosomes. Of note, drug-induced PrP aggregates were not toxic and could easily be degraded by neuronal cells. Here, we focused on determining the PrP domains mediating these effects. Using PrP deletion mutants we show that intracellular re-routing but not aggregation depends on the N-terminal PrP (aa 23-90) and, more precisely, on the preoctarepeat domain (aa 23-50). Fusion of the PrP N-terminus to the GPI-anchored protein Thy-1 did not cause aggregation or re-routing of the chimeric protein, indicating that the N-terminus is only active in re-routing when prion protein aggregation occurs. Insertion of a region with a comparable primary structure contained in the PrP paralogue prnd/doppel (aa 27-50) into N-terminally deleted PrP re-established the re-routing phenotype. Our data reveal an important role for the conserved preoctarepeat region of PrP, namely controlling the intracellular trafficking of misfolded PrP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1600-0854.2004.0175.x | DOI Listing |
Biochim Biophys Acta Mol Basis Dis
January 2025
Department of Medical Science and Biotechnology, I-Shou University, Kaohsiung City 82445, Taiwan. Electronic address:
Head and neck squamous cell carcinoma (HNSCC) cells have a high p53 mutation rate, but there were rare reported about the p53 gain of function through the prion-like aggregated form in p53 mutated HNSCC cells. Thioflavin T (ThT) is used to stain prion-like proteins in cells. Previously, we found that ThT and p53 staining were co-localized in HNSCC cells (Detroit 562 cells) with homozygous p53 R175H mutation.
View Article and Find Full Text PDFJ Neurol Sci
January 2025
Laboratory of Molecular Biology and Genetics, Postgraduate Program of Health Sciences, São Francisco University, Bragança Paulista, São Paulo, Brazil; Laboratory of Clinical and Molecular Microbiology, Postgraduate Program of Health Sciences, São Francisco University, Bragança Paulista, São Paulo, Brazil; LunGuardian Research Group - Epidemiology of Respiratory and Infectious Diseases, Postgraduate Program of Health Sciences, São Francisco University, Bragança Paulista, São Paulo, Brazil. Electronic address:
Background: Abnormal protein depositions of amyloid β and tau are present in the nasal cavity in patients with Alzheimer's disease. This finding raises an idea that nasal tissues would be a promising source of diagnostic biomarkers for Alzheimer's disease. However, the amounts of amyloid β and tau are extremely small, making it difficult to quantify the levels using conventional methods such as ELISA, and thus it is challenging to utilize them for the diagnostic biomarkers.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, France.
Background: Typical Alzheimer's disease (AD) and Limbic-predominant Age-related TDP-43 Encephalopathy (LATE) are two neurodegenerative diseases that present with a similar initial amnestic clinical phenotype but have distinct proteinopathies. AD is characterised by ß-amyloid plaques and intraneuronal neurofibrillary tangles, while LATE is characterised by abnormal neuronal TDP-43 protein. With reference to the prion-like hypothesis regarding the propagation of proteinopathies, investigating white matter fibre bundle alterations could provide new insights into the propagation pathways of specific proteinopathies.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The University of Texas Health Science Center at Houston, Houston, TX, USA.
Background: Alzheimer's disease (AD) is an heterogenous disorder characterized by the accumulation of amyloid-beta (Aβ) and tau. One possible explanation for the clinical and pathological variation in AD lies in the presence of distinct conformational strains of Aβ. Numerous studies provide compelling evidence for the existence of such strains as well as their ability to template their conformations in a prion-like manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!