To elucidate the chemical interactions underlying the role of metallothioneins (MTs) in reducing the cytotoxicity caused by MeHg(II), we monitored in parallel by electronic absorption and CD spectroscopies the stepwise addition of MeHgCl stock solution to mammalian Zn(7)-MT1 and the isolated Zn(4)-alphaMT1 and Zn(3)-betaMT1 fragments. The incorporation of MeHg(+) into Zn(7)-MT and Zn(3)-betaMT entails total displacement of Zn(II) and unfolding of the protein. However, both features are only partial for Zn(4)-alphaMT. The different behavior observed for this fragment, whether isolated or constituting one of the two domains of Zn(7)-MT, indicates interdomain interactions in the whole protein. Overall, the binding properties of Zn(7)-MT, Zn(4)-alphaMT and Zn(3)-betaMT toward MeHg(+) are unprecedented. In addition, the sequestration of MeHg(+) by Zn(7)-MT and the concomitant release of Zn(II) are probably two of the main contributions in the detoxifying role of mammalian MT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-1033.2004.04039.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!