A newly identified 22 kDa protein that interacts with Hsp27 (heat-shock protein 27) was shown to possess the characteristic alpha-crystallin domain, hence named Hsp22, and categorized as a member of the sHsp (small Hsp) family. Independent studies from different laboratories reported the protein with different names such as Hsp22, H11 kinase, E2IG1 and HspB8. We have identified, on the basis of the nucleotide sequence analysis, putative heat-shock factor 1 binding sites upstream of the Hsp22 translation start site. We demonstrate that indeed Hsp22 is heat-inducible. We show, in vitro, chaperone-like activity of Hsp22 in preventing dithiothreitol-induced aggregation of insulin and thermal aggregation of citrate synthase. We have cloned rat Hsp22, overexpressed and purified the protein to homogeneity and studied its structural and functional aspects. We find that Hsp22 fragments on storage. MS analysis of fragments suggests that the fragmentation might be due to the presence of labile peptide bonds. We have established conditions to improve its stability. Far-UV CD indicates a randomly coiled structure for Hsp22. Quaternary structure analyses by glycerol density-gradient centrifugation and gel filtration chromatography show that Hsp22 exists as a monomer in vitro, unlike other members of the sHsp family. Hsp22 exhibits significantly exposed hydrophobic surfaces as reported by bis-8-anilinonaphthalene-l-sulphonic acid fluorescence. We find that the chaperone-like activity is temperature dependent. Thus Hsp22 appears to be a true member of the sHsp family, which exists as a monomer in vitro and exhibits chaperone-like activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1133843 | PMC |
http://dx.doi.org/10.1042/BJ20031958 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!