The role of the shape of electric pulses of cell permeabilization and lysis was studied using the newly developed DPS electroporator. The effects of bipolar pulses, steep rising and falling edges in the pulses, delays between pulses, and shapes of DC signals between the edges on the lysis of bovine oocytes and the permeabilization of their cell membranes were investigated. Comparing the permeabilization rates with the lysis rates revealed a number of correlations, which make it possible to optimize the pulse shapes for achieving maximum permeabilization rates while keeping the lysis rates low. The optimization of pulse shape is essential for improving the procedure of electroporation in mammalian cloning technology.

Download full-text PDF

Source

Publication Analysis

Top Keywords

permeabilization rates
8
lysis rates
8
[permeabilization cell
4
cell membrane
4
membrane programmed
4
programmed form
4
form electrical
4
electrical pulses]
4
pulses] role
4
role shape
4

Similar Publications

Background: poses a significant public health threat. Phage-encoded antimicrobial peptides (AMPs) have emerged as promising candidates in the battle against antibiotic-resistant .

Methods: Antimicrobial peptides from the endolysin of bacteriophage were designed from bacteriophage vB_AbaM_PhT2 and vB_AbaAut_ChT04.

View Article and Find Full Text PDF

The pervasiveness of cancer is a global health concern posing a major threat in terms of mortality and incidence rates. Magnetic hyperthermia (MHT) employing biocompatible magnetic nanoparticles (MNPs) ensuring selective attachment to target sites, better colloidal stability and conserving nearby healthy tissues has garnered widespread acceptance as a promising clinical treatment for cancer cell death. In this direction, multifunctional iron oxide nanoparticles (IONPs) are of significant interest for improved cancer care due to finite size effect associated with inherent magnetic properties.

View Article and Find Full Text PDF

The systemic administration of chemotherapeutic drugs involves some reaction and transport mechanisms (RTMs), including perfusion along the blood vessels, extravasation, lymphatic drainage, interstitial and transmembrane transport, and protein association and dissociation, among others. When tissue is subjected to the controlled application of electric pulses (electroporation), the vessel wall and cell membrane are permeabilized, capillaries are vasoconstricted and tissue porosity is modified, affecting the RTMs during electro-chemotherapeutic treatments. This study is a theoretical investigation about the influence of the electric field magnitude (E), number of electroporation treatments (N) and duration of each electroporation protocol (T) on the presence, interaction and rates of the RTMs using in-house computational tools.

View Article and Find Full Text PDF

Enhanced transdermal delivery of insulin by choline-based ionic liquids.

Int J Pharm

December 2024

School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Shanghai 201399, China; Fudan Zhangjiang Institute, Shanghai 201203, China. Electronic address:

Ionic liquids (ILs) show promises as chemical penetration enhancers (CPEs) for transdermal delivery of macromolecular drugs. However, their high viscosity and strong drug-IL affinity may limit drug diffusion and release from the drug-loaded IL (one-step strategy). Herein, a two-step strategy was used by applying choline-based ILs as pretreatment agents followed by insulin solution to improve penetration.

View Article and Find Full Text PDF

Multidrug resistance (MDR) has emerged as a major barrier to effective breast cancer treatment, contributing to high rates of chemotherapy failure and disease recurrence. There is thus a pressing need to overcome MDR and to facilitate the efficient and precise treatment of breast cancer in a targeted manner. In this study, endogenous functional lipid droplets (IR780@LDs-FeO/OA) were developed and used to effectively overcome the limited diffusion distance of reactive oxygen species owing to their amenability to cascade-targeted delivery, thereby facilitating precise and effective sonodynamic therapy (SDT) for MDR breast cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!