Purpose: To determine whether pharmacologic agents can be used to modulate blood flow in hepatic and renal tumors sufficiently to alter the extent of radiofrequency (RF)-induced coagulation.

Materials And Methods: VX2 tumors (8-15 mm) were implanted in the liver (n = 25) or kidney (n = 8) of 33 New Zealand White rabbits. RF was applied to tumors for 6 minutes with use of conventional electrodes (125 mA +/- 35; 90 degrees C +/- 2 degrees C tip temperature). In the hepatic model, blood flow was modulated with use of halothane, epinephrine, or arsenic trioxide (2-6 mg/kg). Laser Doppler flowmetry was used to quantify changes in hepatic blood flow. Correlation of blood flow with induced coagulation diameter was performed. RF ablation was then performed in a renal model with and without arsenic trioxide.

Results: For liver tumors, halothane and arsenic trioxide reduced blood flow to 40.3% +/- 17.8% and 29% +/- 15% of normal, respectively, whereas epinephrine increased blood flow to 207.8% +/- 97.9%. Correlation of blood flow to coagulation diameter was demonstrated (R(2) = 0.40). Coagulation measured 7 mm +/- 1 with epinephrine, 10 mm +/- 1 with normal blood flow, 12 mm +/- 3 with halothane, and 13 mm +/- 3 with arsenic trioxide (P <.04 compared with controls). In the renal model, arsenic trioxide decreased blood flow (44% +/- 16%) and increased coagulation diameter (10.9 mm +/- 1) compared with controls (84% +/- 11% and 7.6 mm +/- 1; P <.01, both comparisons).

Conclusions: RF-induced coagulation necrosis in rabbit hepatic and renal tumors is affected by tumor blood flow. Pharmacologic modulation of tumor blood flow may provide a noninvasive way to decrease blood flow during thermally mediated ablation therapy, potentially enabling the creation of larger zones of coagulation necrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.rvi.0000109396.74740.c4DOI Listing

Publication Analysis

Top Keywords

blood flow
36
coagulation diameter
12
arsenic trioxide
12
blood
9
flow
9
+/-
9
hepatic renal
8
flow coagulation
8
+/- degrees
8
correlation blood
8

Similar Publications

Fluid administration is widely used to treat hypotension in patients undergoing veno-venous extracorporeal membrane oxygenation (VV-ECMO). However, excessive fluid administration may lead to fluid overload can aggravate acute respiratory distress syndrome (ARDS) and increase patient mortality, predicting fluid responsiveness is of great significance for VV-ECMO patients. This prospective single-center study was conducted in a medical intensive care unit (ICU) and finally included 51 VV-ECMO patients with ARDS in the prone position (PP).

View Article and Find Full Text PDF

Turning attention to tumor-host interface and focus on the peritumoral heterogeneity of glioblastoma.

Nat Commun

December 2024

Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.

Approximately 90% of glioblastoma recurrences occur in the peritumoral brain zone (PBZ), while the spatial heterogeneity of the PBZ is not well studied. In this study, two PBZ tissues and one tumor tissue sample are obtained from each patient via preoperative imaging. We assess the microenvironment and the characteristics of infiltrating immune/tumor cells using various techniques.

View Article and Find Full Text PDF

Neuromorphic-enabled video-activated cell sorting.

Nat Commun

December 2024

State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China.

Imaging flow cytometry allows image-activated cell sorting (IACS) with enhanced feature dimensions in cellular morphology, structure, and composition. However, existing IACS frameworks suffer from the challenges of 3D information loss and processing latency dilemma in real-time sorting operation. Herein, we establish a neuromorphic-enabled video-activated cell sorter (NEVACS) framework, designed to achieve high-dimensional spatiotemporal characterization content alongside high-throughput sorting of particles in wide field of view.

View Article and Find Full Text PDF

Multifaceted Immunomodulatory Nanocomplexes Target Neutrophilic-ROS Inflammation in Acute Lung Injury.

Adv Sci (Weinh)

December 2024

Department of Critical Care Medicine and Emergency, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.

The sepsis-induced acute lung injury (ALI) still represents one of the leading causes of death in critically ill patients, underscoring the need for novel therapies. Excessive activation of immune cells and damage of reactive oxygen species (ROS) are the main factors that exacerbate lung injury. Here, the multifaceted immunomodulatory nanocomplexes targeting the proinflammatory neutrophilic activation and ROS damage are established.

View Article and Find Full Text PDF

Impact of blood flow restriction intensity on pain perception and muscle recovery post-eccentric exercise.

Clin Physiol Funct Imaging

January 2025

Faculty of Health Sciences, Division of Physiotherapy and Rehabilitation, Istanbul Okan University, Istanbul, Turkey.

Background: Delayed onset muscle soreness (DOMS) is a well-established phenomenon characterized by ultrastructural muscle damage that typically develops following unfamiliar or high-intensity exercise. DOMS manifests with a constellation of symptoms, including muscle tenderness, stiffness, edema, mechanical hyperalgesia, and a reduced range of joint motion. In recent years, the application of blood flow restriction (BFR) has garnered attention for its potential impact on DOMS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!