The cytokine interleukin-1beta (IL-1beta) is critical to the formation of an astrocytic scar after CNS injury, but the mechanisms by which it induces a reactive phenotype remain unresolved. Here, we show that IL-1beta regulates the phenotype of astrocytes via deactivation of the Rho GTPase-Rho kinase (ROCK) pathway, which governs cellular morphology and migration via effects on F-actin and its interactions with focal adhesions, nonmuscle myosin, and microvillar adapter proteins of the ezrin-radixin-moesin (ERM) family. We found that IL-1beta induced cortical reorganization of F-actin and dephosphorylation of focal adhesion kinase, myosin light chain 2, and myosin phosphatase targeting subunit 1 in primary human astrocytes, and that all of these effects were mimicked by Rho-ROCK pathway blockade. We also found that IL-1beta conversely potentiated ERM phosphorylation, and that this effect was mediated via a Rho-ROCK-independent mechanism. Next, we used a rhotekin pulldown assay to confirm directly that IL-1beta deactivates Rho, and further demonstrated that a constitutively active Rho construct rescued astrocytes from developing an IL-1beta-induced reactive phenotype. These data implicate cytokine regulation of the Rho-ROCK pathway in the generation of a reactive astrogliosis, and we suggest that interventions targeted at this level may facilitate manipulation of the glial scar in inflammatory disorders of the human CNS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6729504 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.4789-03.2004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!