Multisensory visual-auditory object recognition in humans: a high-density electrical mapping study.

Cereb Cortex

Cognitive Neurophysiology Laboratory, Program in Cognitive Neuroscience and Schizophrenia, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.

Published: April 2004

AI Article Synopsis

Article Abstract

Multisensory object-recognition processes were investigated by examining the combined influence of visual and auditory inputs upon object identification--in this case, pictures and vocalizations of animals. Behaviorally, subjects were significantly faster and more accurate at identifying targets when the picture and vocalization were matched (i.e. from the same animal), than when the target was represented in only one sensory modality. This behavioral enhancement was accompanied by a modulation of the evoked potential in the latency range and general topographic region of the visual evoked N1 component, which is associated with early feature processing in the ventral visual stream. High-density topographic mapping and dipole modeling of this multisensory effect were consistent with generators in lateral occipito-temporal cortices, suggesting that auditory inputs were modulating processing in regions of the lateral occipital cortices. Both the timing and scalp topography of this modulation suggests that there are multisensory effects during what is considered to be a relatively early stage of visual object-recognition processes, and that this modulation occurs in regions of the visual system that have traditionally been held to be unisensory processing areas. Multisensory inputs also modulated the visual 'selection-negativity', an attention dependent component of the evoked potential this is usually evoked when subjects selectively attend to a particular feature of a visual stimulus.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cercor/bhh007DOI Listing

Publication Analysis

Top Keywords

object-recognition processes
8
auditory inputs
8
evoked potential
8
visual
7
multisensory
5
multisensory visual-auditory
4
visual-auditory object
4
object recognition
4
recognition humans
4
humans high-density
4

Similar Publications

Artificial Visual System for Stereo-Orientation Recognition Based on Hubel-Wiesel Model.

Biomimetics (Basel)

January 2025

Institute of AI for Industries, Chinese Academy of Sciences, 168 Tianquan Road, Nanjing 211100, China.

Stereo-orientation selectivity is a fundamental neural mechanism in the brain that plays a crucial role in perception. However, due to the recognition process of high-dimensional spatial information commonly occurring in high-order cortex, we still know little about the mechanisms underlying stereo-orientation selectivity and lack a modeling strategy. A classical explanation for the mechanism of two-dimensional orientation selectivity within the primary visual cortex is based on the Hubel-Wiesel model, a cascading neural connection structure.

View Article and Find Full Text PDF

Bone marrow mesenchymal stem cells derived cytokines associated with AKT/IAPs signaling ameliorate Alzheimer's disease development.

Stem Cell Res Ther

January 2025

NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China.

Background: Alzheimer's disease (AD) is a progressive neurodegenerative condition affecting around 50 million people worldwide. Bone marrow-derived mesenchymal stem cells (BMMSCs) have emerged as a promising source for cellular therapy due to their ability to differentiate into multiple cell types and their paracrine effects. However, the direct injection of BMMSCs can lead to potential unpredictable impairments, prompting a renewed interest in their paracrine effects for AD treatment.

View Article and Find Full Text PDF

Background: Adamantane derivatives, such as memantine (Mem) and amantadine (Ada), have distinct mechanisms and therapeutic applications. Ada is primarily utilized as an antiviral and anti-Parkinson drug without significant pro-cognitive effects, Mem is effective in various clinical conditions characterized by cognitive deficits, including Alzheimer's disease. Recent evidence highlights a neuroprotective role for Aβ monomers, suggesting that preventing their aggregation into toxic oligomers could be a promising therapeutic strategy.

View Article and Find Full Text PDF

Instruction-induced modulation of the visual stream during gesture observation.

Neuropsychologia

January 2025

Neuroscience Area, SISSA, Trieste, Italy; Dipartimento di Medicina dei Sistemi, Università di Roma-Tor Vergata, Roma, Italy.

Although gesture observation tasks are believed to invariably activate the action-observation network (AON), we investigated whether the activation of different cognitive mechanisms when processing identical stimuli with different explicit instructions modulates AON activations. Accordingly, 24 healthy right-handed individuals observed gestures and they processed both the actor's moved hand (hand laterality judgment task, HT) and the meaning of the actor's gesture (meaning task, MT). The main brain-level result was that the HT (vs MT) differentially activated the left and right precuneus, the left inferior parietal lobe, the left and right superior parietal lobe, the middle frontal gyri bilaterally and the left precentral gyrus.

View Article and Find Full Text PDF

Food properties modulate activities in posterior parietal and visual cortex during chewing.

Physiol Behav

January 2025

Department of Anesthesiology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba, 271-8587, Japan. Electronic address:

Cross-modal interactions between sensory modalities may be necessary for recognition of chewing food by the invisible oral cavity to avoid damaging the tongue and/or oral mucosa. The present study used functional near-infrared spectroscopy to investigate whether the food properties hardness and size influence activities in the posterior parietal cortex and visual cortex during chewing performance in healthy individuals. It was found that an increase in food hardness enhanced both posterior parietal cortex and visual cortex activities, while an increase in food size enhanced activities in the same regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!