The basis for multiple representations of equivalent frequency ranges in auditory cortex was studied with physiological and anatomical methods. Our goal was to trace the convergence of thalamic, commissural, and corticocortical information upon two tonotopic fields in the cat, the primary auditory cortex (AI) and the anterior auditory field (AAF). Both fields are among the first cortical levels of processing. After neurophysiological mapping of characteristic frequency, we injected different retrograde tracers at separate, frequency-matched loci in AI and AAF. We found differences in their projections that support the notion of largely segregated parallel processing streams in the auditory thalamus and cerebral cortex. In each field, ipsilateral cortical input amounts to approximately 70% of the number of cells projecting to an isofrequency domain, while commissural and thalamic sources are each approximately 15%. Labeled thalamic and cortical neurons were concentrated in tonotopically predicted regions and in smaller loci far from their spectrally predicted positions. The few double-labeled thalamic neurons (<2%) are consistent with the hypothesis that information to AI and AAF travels along independent processing streams despite widespread regional overlap of thalamic input sources. Double labeling is also sparse in both the corticocortical and commissural systems ( approximately 1%), confirming their independence. The segregation of frequency-specific channels within thalamic and cortical systems is consistent with a model of parallel processing in auditory cortex. The global convergence of cells outside the targeted frequency domain in AI and AAF could contribute to context-dependent processing and to intracortical plasticity and reorganization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cercor/bhh006 | DOI Listing |
Cortex
January 2025
School of Psychology, Liverpool John Moores University, United Kingdom.
Background: Alzheimer's disease (AD) can be diagnosed by in vivo abnormalities of amyloid-β plaques (A) and tau accumulation (T) biomarkers. Previous studies have shown that analyses of serial position performance in episodic memory tests, and especially, delayed primacy, are associated with AD pathology even in individuals who are cognitively unimpaired. The earliest signs of cortical tau pathology are observed in medial temporal lobe (MTL) regions, yet it is unknown if serial position markers are also associated with early tau load in these regions.
View Article and Find Full Text PDFBehav Brain Res
January 2025
Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Cluster of Excellence Hearing4all, German Research Foundation, Hannover, Germany; Center for Systems Neuroscience (ZSN) Hannover, 30559 Hannover, Germany.
Background: The three-class oddball paradigm allows to investigate the processing of behaviorally relevant and irrelevant auditory stimuli. In humans, event-related potentials (ERPs) are used as neural correlate of behavior. We recorded local field potentials (LFPs) within the medial prefrontal cortex (mPFC) in rats during three-class and passive two-class oddball paradigms and analyzed the ERPs focusing on similarities to human recordings.
View Article and Find Full Text PDFCortex
December 2024
Institute of Research in Psychology (IPSY) & Institute of Neuroscience (IoNS), Louvain Bionics Center, University of Louvain (UCLouvain), Louvain-la-Neuve, Belgium; School of Health Sciences, HES-SO Valais-Wallis, The Sense Innovation and Research Center, Lausanne & Sion, Switzerland. Electronic address:
Effective social communication depends on the integration of emotional expressions coming from the face and the voice. Although there are consistent reports on how seeing and hearing emotion expressions can be automatically integrated, direct signatures of multisensory integration in the human brain remain elusive. Here we implemented a multi-input electroencephalographic (EEG) frequency tagging paradigm to investigate neural populations integrating facial and vocal fearful expressions.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Psychology, Chinese University of Hong Kong, Hong Kong SAR, China
The extraction and analysis of pitch underpin speech and music recognition, sound segregation, and other auditory tasks. Perceptually, pitch can be represented as a helix composed of two factors: height monotonically aligns with frequency, while chroma cyclically repeats at doubled frequencies. Although the early perceptual and neurophysiological mechanisms for extracting pitch from acoustic signals have been extensively investigated, the equally essential subsequent stages that bridge to high-level auditory cognition remain less well understood.
View Article and Find Full Text PDFElife
January 2025
Department of Psychology, Queens University, Kingston, Canada.
Movie-watching is a central aspect of our lives and an important paradigm for understanding the brain mechanisms behind cognition as it occurs in daily life. Contemporary views of ongoing thought argue that the ability to make sense of events in the 'here and now' depend on the neural processing of incoming sensory information by auditory and visual cortex, which are kept in check by systems in association cortex. However, we currently lack an understanding of how patterns of ongoing thoughts map onto the different brain systems when we watch a film, partly because methods of sampling experience disrupt the dynamics of brain activity and the experience of movie-watching.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!