Overexpression of the anti-apoptotic protein Bcl-2 has been associated with several malignancies, including small cell lung cancer (SCLC). In the present study, we have investigated if Bcl-2 contributes to the emergence of cisplatin resistance in SCLC H69 cells. The ability of cisplatin to induce apoptosis was decreased in H69 cells that acquired resistance to cisplatin (H69/CP). The level of Bcl-2 was, however, substantially reduced in H69/CP cells compared to parental H69 cells. There was little change in Bcl-2 content in H69 cells that were resistant to etoposide (VP-16) or Taxol. Bcl-2 was constitutively phosphorylated at serine 70 in H69 cells but not in H69/CP cells and cisplatin had little effect on Bcl-2 phosphorylation. The level of procaspase-3 was elevated in H69/CP cells but the ability of cisplatin to induce mitochondrial depolarization, caspase-9 activation, and poly(ADP-ribose) polymerase (PARP) cleavage was compromised in H69/CP cells. The level of the anti-apoptotic protein Bcl-x(L) and the pro-apoptotic protein Bax was slightly reduced in H69/CP cells but the ratio of pro-apoptotic and anti-apoptotic Bcl-2 family proteins was not sufficient to explain cellular resistance to cisplatin. These results suggest that the acquisition of cisplatin resistance by H69 cells was not due to an increase in the level/phosphorylation status of the anti-apoptotic protein Bcl-2.
Download full-text PDF |
Source |
---|
Toxicol Appl Pharmacol
November 2024
Peking University Shenzhen Hospital Medical College, Anhui Medical University, Shenzhen 518036, People's Republic of China; Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China. Electronic address:
The lncRNA CALML3 antisense RNA 1 (CALML3-AS1) is a biomarker for various cancers, including non-small cell lung cancer (NSCLC). However, the role of CALM3-AS1 in small cell lung cancer (SCLC) is still unclear. Here, we found that the CALML3-AS1 was upregulated in SCLC tissues and cells.
View Article and Find Full Text PDFCancers (Basel)
November 2024
Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA.
Small-cell lung cancer (SCLC) has a poor prognosis because it is often diagnosed after it has spread and develops multi-drug resistance. Epibrassinolide (EB) is a plant steroid hormone with widespread distribution and physiological effects. In plants, EB-activated gene expression occurs via a GSK-mediated signaling pathway, similar to β-catenin signaling in animal cells that is elevated in cancer cells.
View Article and Find Full Text PDFBackground: Fibroinflammatory cholangiopathies, such as primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC), are characterized by inflammation and biliary fibrosis, driving disease-related complications. In biliary fibrosis, cholangiocytes activated by transforming growth factor-β (TGFβ) release signals that recruit immune cells to drive inflammation and activate hepatic myofibroblasts to deposit the extracellular matrix (ECM). TGFβ regulates stearoyl-CoA desaturase (SCD), an enzyme that catalyzes the synthesis of monounsaturated fatty acids, in stimulating fibroinflammatory lipid signaling.
View Article and Find Full Text PDFTheranostics
October 2024
Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
C-X-C motif chemokine receptor 4 (CXCR4) is an attractive target for the diagnosis and treatment of cancers. Here, we aimed to develop a new CXCR4-targeted PET tracer, and to investigate the translational potential for noninvasive imaging of CXCR4 expression in various cancer entities through preclinical and pilot clinical studies. [F]AlF-NOTA-QHY-04 was synthesized and evaluated by cellular uptake, blocking and biolayer interferometry studies .
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany.
This study evaluates the efficacy of [I]I-ERIC1 in targeting and inhibiting the growth of SCLC tumors in mice, focusing on tumor accumulation and regression and potential side effects. NCAM-positive NCI-H69 SCLC cells were implanted in CB 17 SCID mice, and [I]I-ERIC1 biokinetics were measured in organs and tissues at four post-injection time points (24, 72, 96, and 120 h). The experimental series compared tumor growth, survival, and changes in blood counts among three treatment groups (1, 2, or 3 MBq) and a control group, with treatments initiated either two or five days post implantation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!