The rate of light delivery (fluence rate) plays a critical role in photodynamic therapy (PDT) through its control of tumor oxygenation. This study tests the hypothesis that fluence rate also influences the inflammatory responses associated with PDT. PDT regimens of two different fluences (48 and 128 J/cm(2)) were designed for the Colo 26 murine tumor that either conserved or depleted tissue oxygen during PDT using two fluence rates (14 and 112 mW/cm(2)). Tumor oxygenation, extent and regional distribution of tumor damage, and vascular damage were correlated with induction of inflammation as measured by interleukin 6, macrophage inflammatory protein 1 and 2 expression, presence of inflammatory cells, and treatment outcome. Oxygen-conserving low fluence rate PDT of 14 mW/cm(2) at a fluence of 128 J/cm(2) yielded approximately 70-80% tumor cures, whereas the same fluence at the oxygen-depleting fluence rate of 112 mW/cm(2) yielded approximately 10-15% tumor cures. Low fluence rate induced higher levels of apoptosis than high fluence rate PDT as indicated by caspase-3 activity and terminal deoxynucleotidyl transferase-mediated nick end labeling analysis. The latter revealed PDT-protected tumor regions distant from vessels in the high fluence rate conditions, confirming regional tumor hypoxia shown by 2-(2-nitroimidazol-1[H]-yl)-N-(3,3,3-trifluoropropyl) acetamide staining. High fluence at a low fluence rate led to ablation of CD31-stained endothelium, whereas the same fluence at a high fluence rate maintained vessel endothelium. The highest levels of inflammatory cytokines and chemokines and neutrophilic infiltrates were measured with 48 J/cm(2) delivered at 14 mW/cm(2) ( approximately 10-20% cures). The optimally curative PDT regimen (128 J/cm(2) at 14 mW/cm(2)) produced minimal inflammation. Depletion of neutrophils did not significantly change the high cure rates of that regimen but abolished curability in the maximally inflammatory regimen. The data show that a strong inflammatory response can contribute substantially to local tumor control when the PDT regimen is suboptimal. Local inflammation is not a critical factor for tumor control under optimal PDT treatment conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.can-03-3513 | DOI Listing |
Exp Astron (Dordr)
January 2025
Space Sciences Laboratory, University of California, Berkeley, 7 Gauss Way, Berkeley, 94720 CA USA.
We present an investigation into the effects of high-energy proton damage on charge trapping in germanium cross-strip detectors with the goal of accomplishing three important measurements. First, we calibrated and characterized the spectral resolution of a spare COSI-balloon detector in order to determine the effects of intrinsic trapping, finding that electron trapping due to impurities dominates over hole trapping in the undamaged detector. Second, we performed two rounds of proton irradiation of the detector in order to quantify, for the first time, the rate at which charge traps are produced by proton irradiation.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
January 2025
U.S. Food and Drug Administration, Office of Science and Engineering Labs, Division of Imaging, Diagnostics, and Software Reliability, Silver Spring, Maryland, United States.
Purpose: We evaluate the impact of charge summing correction on a cadmium telluride (CdTe)-based photon-counting detector in breast computed tomography (CT).
Approach: We employ a custom-built laboratory benchtop system using the X-THOR FX30 0.75-mm CdTe detector (Varex Imaging, Salt Lake City, Utah, United States) with a pixel pitch of 0.
Med Phys
January 2025
Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, NKI-AvL, Amsterdam, Netherlands.
Photodynamic therapy (PDT) is a treatment modality clinically approved for several oncologic indications, including esophageal and endobronchial cancers, precancerous conditions including Barrett's esophagus and actinic keratosis, and benign conditions like age-related macular degeneration. While it is currently clinically underused, PDT is an area of significant research interest. Because PDT relies on the absorption of light energy by intrinsic or administered absorbers, the dosimetric quantity of interest is the absorbed energy per unit mass of tissue, proportional to the fluence rate of light in tissue.
View Article and Find Full Text PDFLiposomal doxorubicin (Dox), a treatment option for recurrent ovarian cancer, often suffers from suboptimal biodistribution and efficacy, which might be addressed with precision drug delivery systems. Here, we introduce a catheter-based endoscopic probe designed for multispectral, quantitative monitoring of light-triggered drug release. This tool utilizes red-light photosensitive porphyrin-phospholipid (PoP), which is encapsulated in liposome bilayers to enhance targeted drug delivery.
View Article and Find Full Text PDFPLoS One
January 2025
College of Safety Science and Engineering, Liaoning Technical University, Fuxin, Liaoning, China.
To investigate the impact of the oxidation temperature and variations in airflow conditions on coal spontaneous combustion characteristics, pre-oxidized coal samples were prepared using a programmed temperature rise method. Synchronous thermal analysis experiments and Fourier transform infrared spectroscopy were conducted to explore changes in the thermal effects and functional group content of the coal samples, respectively. The results indicate that variations in pre-oxidation conditions primarily in fluence the activation temperature and maximum weight loss temperature of the coal samples, while exerting a lesser impact on the critical temperature and ignition point.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!