As first observed in rat adrenal glomerulosa cells, cytoplasmic Ca(2+) signal, induced by K(+), angiotensin II or vasopressin, evokes an increase in the level of reduced mitochondrial pyridine nucleotides, NADH and NADPH. Prostaglandin F(2)alpha and extracellular ATP exert similar effects in rat ovarian luteal cells. This coupling of cytoplasmic Ca(2+) concentration and mitochondrial metabolism occurs also when the stimuli are applied at physiological concentration and under conditions when no formation of high-Ca(2+) perimitochondrial microdomains may be presumed. We present evidence that low submicromolar Ca(2+) signals in the cytoplasm can increase mitochondrial Ca(2+) concentration and activate mitochondrial dehydrogenation processes. Several observations support the assumption that intramitochondrial Ca(2+) signals play a significant role in the stimulation of steroid hormone production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mce.2003.11.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!