Based on molecular modeling studies, macrocyclic inhibitors of phosphatase cdc25B were synthetically derived from steroids. A preliminary SAR for this new template was elaborated. A series of compounds shows inhibition of cdc25B in the low micromolar range and good selectivity versus other phosphatases. The compounds did not show a significant antiproliferative effect in MaTu or HaCaT cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2004.01.052 | DOI Listing |
Cells
January 2025
Nuclear Signaling Laboratory, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
Signal-dependent transport into and out of the nucleus mediated by members of the importin (IMP) superfamily is crucial for eukaryotic function, with inhibitors targeting IMPα being of key interest as anti-infectious agents, including against the apicomplexan species and , causative agents of malaria and toxoplasmosis, respectively. We recently showed that the FDA-approved macrocyclic lactone ivermectin, as well as several other different small molecule inhibitors, can specifically bind to and inhibit and IMPα functions, as well as limit parasite growth. Here we focus on the FDA-approved antiparasitic moxidectin, a structural analogue of ivermectin, for its IMPα-targeting and anti-apicomplexan properties for the first time.
View Article and Find Full Text PDFBioorg Med Chem
November 2024
Takeda Development Center Americas, Inc., 9625 Towne Centre Drive, San Diego, CA 92121, USA.
Interleukin-11 (IL-11), a member of the IL-6 cytokine family, has potential pro-inflammatory and pro-fibrotic roles in pulmonary, hepatic, cardiovascular, renal and intestinal disease pathogenesis, including oncogenesis. The potential for therapeutic intervention in these disease spaces has therefore made the IL-11 signaling axis an attractive target in drug discovery, and antibody inhibitors of IL-11 signaling are currently under evaluation in Phase I/II clinical trials. While lower molecular weight small molecule and peptide inhibitors may offer the potential for improved tissue penetration, developability and manufacturing cost compared with a protein therapeutic, reports of such chemical matter in the literature are limited.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Darmstadt University of Technology: Technische Universitat Darmstadt, Clemens-Schöpf-Institute of Organic Chemistry and Biochemistry, Alarich-Weiss-Strasse 4, 64287, Darmstadt, GERMANY.
J Med Chem
January 2025
Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33607 Pessac, France.
Combining helical foldamers with α-peptides can produce α-helix mimetics with a reduced peptide character and enhanced resistance to proteolysis. Previously, we engineered a hybrid peptide-oligourea sequence replicating the N-terminal α-helical domain of p53 to achieve high affinity binding to hDM2. Here, we further advance this strategy by combining the foldamer approach with side chain cross-linking to create more constrained cell-permeable inhibitors capable of effectively engaging the target within cells.
View Article and Find Full Text PDFCommun Chem
December 2024
Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, UK.
Covalent drugs can achieve high potency with long dosing intervals. However, concerns remain about side-effects associated with off-target reactivity. Combining macrocyclic peptides with covalent warheads provides a solution to minimise off-target reactivity: the peptide enables highly specific target binding, positioning a weakly reactive warhead proximal to a suitable residue in the target.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!