We have evaluated the changes in contractile activity and oxidant damage of corpus cavernosum, urinary bladder, kidney and aorta after chronic nicotine administration in rats. The effects of melatonin on these parameters were investigated also. Male Wistar albino rats were injected intraperitoneally with nicotine hydrogen bitartrate (0.6 mg kg(-1) daily for 21 days) or saline. Melatonin (10 mg kg(-1), i.p.) was administered either alone or with nicotine injections. Corpus cavernosum, bladder and aorta were used for contractility studies, or stored with kidneys for the measurement of malondialdehyde and glutathione levels. Corpus cavernosum, bladder, and aorta samples were examined histologically and the extent of microscopic tissue damage was scored. In the nicotine-treated group, the contraction of corpus cavernosum, bladder and aorta samples and the relaxation of corporeal and aorta tissues decreased significantly compared with controls. However, melatonin treatment restored these responses. In the nicotine-treated group, there was a significant increase in the malondialdehyde levels of the corporeal tissue, bladder, kidney and aorta, with marked reductions in glutathione levels compared with controls. Melatonin treatment reversed these effects also. Melatonin administration to nicotine-treated animals caused a marked reduction in the microscopic damage of the tissues compared with those of the untreated group. In this study, nicotine-induced dysfunction of the corpus cavernosum, bladder and aorta of rats was reversed by melatonin treatment. Moreover, melatonin, as an antioxidant, abolished elevation in lipid peroxidation products, and reduction in the endogenous antioxidant glutathione, and protected the tissues from severe damage due to nicotine exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1211/0022357022818DOI Listing

Publication Analysis

Top Keywords

corpus cavernosum
20
cavernosum bladder
16
bladder aorta
16
melatonin treatment
12
melatonin
8
aorta
8
chronic nicotine
8
nicotine administration
8
bladder kidney
8
kidney aorta
8

Similar Publications

Background: Erectile dysfunction (ED) is a prevalent male sexual disorder, commonly associated with hypertension, though the underlying mechanisms remain poorly understood.

Objective: This study aims to explore the role of Fatty acid synthase (Fasn) in hypertension-induced ED and evaluate the therapeutic potential of the Fasn inhibitor C75.

Materials And Methods: Erectile function was assessed by determining the intracavernous pressure/mean arterial pressure (ICP/MAP) ratio, followed by the collection of cavernous tissue for transcriptomic and non-targeted metabolomic analyses.

View Article and Find Full Text PDF

Background: Cavernous nerve injury-induced erectile dysfunction (CNI-ED) is a common complication following radical prostatectomy and severely affects patients' quality of life. The mitochondrial impairment in corpus cavernosum smooth muscle cells (CCSMCs) may be an important pathological mechanism of CNI-ED. Previous studies have shown that transplantation of human adipose derived stem cells (ADSC) can alleviate CNI-ED in a rat model.

View Article and Find Full Text PDF

Angiosarcoma of the penis is an exceptionally rare mesenchymal tumor, with only about 30 cases documented in the literature. Because of its rarity and the often nonspecific clinical presentation, histopathological examination plays a critical role in accurate diagnosis. Angiosarcoma of the penis typically arises in the corpus cavernosum but has also been reported in the glans and urethra, often presenting with metastases.

View Article and Find Full Text PDF

Background: Pelvic trauma can have long-lasting debilitating effects, including severe erectile dysfunction (ED) in men. While there are effective treatments for ED, these treat the symptoms not the cause. Those who suffer from an acute traumatic injury to the neurovascular supply of penis, may benefit from regenerative therapy.

View Article and Find Full Text PDF

Adrenergic stimulation induces contractions in the corpus cavernosum smooth muscle (CCSM) that are important in maintaining penile flaccidity. The aim of this study was to investigate the role of K7 channels in regulating contractions and their underlying Ca signals in mouse CCSM. Quantitative PCR revealed transcriptional expression of KCNQ1 and KCNQ3-5 genes in whole CCSM, with KCNQ5 as the most highly transcribed K7 encoding gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!