Skin is subjected to many environmental threats, some of which altering the structure and function of the stratum corneum. Among them, surfactants are recognized factors that may influence irritant contact dermatitis. The present study was conducted to compare the variations in skin capacitance and corneosurfametry (CSM) reactivity before and after skin exposure to repeated subclinical injuries by 2 hand dishwashing liquids. A forearm immersion test was performed on 30 healthy volunteers. 2 daily soak sessions were performed for 5 days. At inclusion and the day following the last soak session, skin capacitance was measured and cyanoacrylate skin-surface strippings were harvested. The latter specimens were used for the ex vivo microwave CSM. Both types of assessments clearly differentiated the 2 hand dishwashing liquids. The forearm immersion test allowed the discriminant sensitivity of CSM to increase. Intact skin capacitance did not predict CSM data. By contrast, a significant correlation was found between the post-test conductance and the corresponding CSM data. In conclusion, a forearm immersion test under realistic conditions can discriminate the irritation potential between surfactant-based products by measuring skin conductance and performing CSM. In vivo skin preconditioning by surfactants increases CSM sensitivity to the same surfactants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.0105-1873.2003.0269.x | DOI Listing |
Nano Converg
January 2025
Bendable Electronics and Sustainable Technologies (BEST) Group, Electrical and Computer Engineering Department, Northeastern University, Boston, MA, 02115, USA.
The intriguing way the receptors in biological skin encode the tactile data has inspired the development of electronic skins (e-skin) with brain-inspired or neuromorphic computing. Starting with local (near sensor) data processing, there is an inherent mechanism in play that helps to scale down the data. This is particularly attractive when one considers the huge data produced by large number of sensors expected in a large area e-skin such as the whole-body skin of a robot.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
Proximity and tactile multiresponse sensing electronic skin enriches the perception dimension, which is of great significance in promoting the intelligence of electronic skin. However, achieving real-time visualization in sensors such as proximity and tactile feedback remains a challenge. A proximity and tactile sensor with visual function is designed, which can realize optical early warning and electrical recognition when the object is near, and optical display and electrical output when the object is in contact.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China.
Soft and stretchable strain sensors are crucial for applications in human-machine interfaces, flexible robotics, and electronic skin. Among these, capacitive strain sensors are widely used and studied; however, they face challenges due to material and structural constraints, such as low baseline capacitance and susceptibility to external interference, which result in low signal-to-noise ratios and poor stability. To address these issues, we propose a U-shaped electrode flexible strain sensor based on liquid metal elastomer (LME).
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Physiology, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia.
: Atopic dermatitis (AD) is a chronic skin condition that weakens the skin barrier, leading to increased trans-epidermal water loss and reduced skin moisture. Understanding how these changes in the skin barrier relate to AD severity in Mongolian children may offer insights that could apply to other regions facing similar environmental challenges. : A cross-sectional study was conducted at the National Dermatology Center of Mongolia, involving 103 children with AD.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province, 116034, China; Shandong Tonye Photoresist Material Technology CO., LTD, Weifang, 261206, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!