Calculations via scalar-relativistic density functional theory (DFT) and ab initio CCSD(T) methodologies are used to explore the possibility of direct interactions between molecular UO2 and Ar atoms. The 3Hg electronic state of UO2, which is an excited state of the isolated molecule, exhibits significant bonding to Ar in the model complexes UO2(Ar) and UO2(Ar)5. The calculated vibrational frequencies of ground-state 3Phiu UO2 and UO2(Ar)5 with an (fphi)1(fdelta)1 electron configuration agree well with the observed frequencies of UO2 in solid neon and solid argon, respectively. The results strongly suggest that the ground electron configuration of UO2 changes from 5f17s1 to 5f2 when the matrix host is changed from neon to argon.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja039933w | DOI Listing |
Small
December 2024
Key Laboratory of Photonic and Electronic Bandgap Materials Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China.
Extracting uranium from seawater is crucial for tapping oceanic resources vital to future energy supply. This study synthesized a novel nitrogen vacancy carbon nitride (NCN) grafted polyethyleneimine (PEI) composite material (NCNP). Experiments and molecular dynamics simulations reveal that NCNP effectively hinders the diffusion of uranyl ions (UO ) to the NCN surface, thereby inhibiting electron transfer reactions.
View Article and Find Full Text PDFACS ES T Water
July 2024
MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Centre, University of Szeged, H-6720 Szeged, Hungary.
Effective uranium (U) capture is required for the remediation of contaminated solutes associated with the nuclear fuel cycle, including fuel reprocessing effluents, decommissioning, or nuclear accident cleanup. Here, interactions between uranyl cations (UO ) and a Mg-Al layered double hydroxide (LDH) were investigated using two types of uranyl-bearing LDH colloids. The first (ULDH) was synthesized by coprecipitation with 10% of Mg substituted by UO .
View Article and Find Full Text PDFJ Chem Phys
October 2024
Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA.
Ionic liquids (ILs) are a unique class of solvents with potential applications in advanced separation technologies relevant to the nuclear industry. ILs are salts with low melting points and a wide range of tunable physical properties, such as viscosity, hydrophobiciy, conductivity, and liquidus range. ILs have negligible vapor pressure, are often non-flammable, and can have high thermal stability and a wide electrochemical window, making them attractive for use in separations processes relevant to the nuclear industry.
View Article and Find Full Text PDFAnal Chem
September 2024
Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
The destructive assay of bulk uranium and plutonium, a cornerstone for chemical quality control and nuclear material accounting of fuel matrices, mandates robust and precise methodologies. Despite ongoing research, simultaneous, matrix independent determination of U and Pu has eluded solution owing to inherent limitations in aqueous acid medium, viz., coexistence of multiple oxidation states, coupled electrochemical reactions, smaller potential window, and requirement for multistep sample preconditioning and tedious electrode modification.
View Article and Find Full Text PDFSmall
September 2024
State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi, 330013, China.
The removal of uranyl ions (UO ) from water is challenging due to their chemical stability, low concentrations, complex water matrix, and technical limitations in extraction and separation. Herein, a novel molybdenum disulfide/graphene oxide heterojunction (MoS/GO-H) is developed, serving as an effective electrode for capacitive deionization (CDI). By combining the inherent advantages of electroadsorption and electrocatalysis, an innovative electroadsorption-electrocatalysis system (EES) strategy is introduced.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!