Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Substituted pyridines were employed to prepare a series of terphenylcarboxylate-bridged diiron(II) compounds to mimic aspects of the chemistry at the active sites of bacterial multicomponent monooxygenases, including soluble methane monooxygenase (sMMO) and toluene monooxygenase (ToMO). Complexes of general formula [Fe2(O2CArTol)4L], L = 2, 3, or 4-pyridyldiphenylphosphine, 2-pyridylphenylsulfide, or 2-benzylpyridine and ArTol = 2,6-di(p-tolyl)benzoate, were synthesized and characterized by X-ray crystallography. Upon exposure of these compounds to dioxygen, ligand oxidation ensued and, in one case, proceeded catalytically.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja031806c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!