Positron emission tomography imaging of the aging brain.

Neuroimaging Clin N Am

Department of Radiology, University of Pittsburgh School of Medicine, CHP MT 3972, 200 Lothrop Street, Pittsburgh, PA 15213-2582, USA.

Published: November 2003

PET imaging provides a vital means to study the human brain in vivo in aging and early disease states. PET studies using selective markers for brain metabolism and neurotransmitter function have uncovered a wealth of information on healthy and pathologic brain aging, and its relationship to behavior and mood states. Recognition of inherent potential confounds in the use of PET in aging studies is essential to the proper interpretation of these data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1052-5149(03)00108-4DOI Listing

Publication Analysis

Top Keywords

positron emission
4
emission tomography
4
tomography imaging
4
aging
4
imaging aging
4
brain
4
aging brain
4
brain pet
4
pet imaging
4
imaging vital
4

Similar Publications

Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors derived from chromaffin cells, with 80-85% originating in the adrenal medulla and 15-20% from extra-adrenal chromaffin tissues (paragangliomas). Approximately 30-40% of PPGLs have a hereditary component, making them one of the most genetically predisposed tumor types. Recent advances in genetic research have classified PPGLs into three molecular clusters: pseudohypoxia-related, kinase-signaling, and -signaling pathway variants.

View Article and Find Full Text PDF

Background: The aim of this study is to develop deep learning models based on F-fluorodeoxyglucose positron emission tomography/computed tomographic (F-FDG PET/CT) images for predicting individual epidermal growth factor receptor () mutation status in lung adenocarcinoma (LUAD).

Methods: We enrolled 430 patients with non-small-cell lung cancer from two institutions in this study. The advanced Inception V3 model to predict EGFR mutations based on PET/CT images and developed CT, PET, and PET + CT models was used.

View Article and Find Full Text PDF

Hub regions in the brain, recognized for their roles in ensuring efficient information transfer, are vulnerable to pathological alterations in neurodegenerative conditions, including Alzheimer's disease (AD). Computational simulations and animal experiments have hinted at the theory of activity-dependent degeneration as the cause of this hub vulnerability. However, two critical issues remain unresolved.

View Article and Find Full Text PDF

Significance: The eye can be used as a potential monitoring window for screening, diagnosis, and monitoring of neurological diseases. Alzheimer's disease (AD) and vascular cognitive impairment (VCI) are common causes of cognitive impairment and may share many similarities in ocular signs. Multimodal ophthalmic imaging is a technology to quantify pupillary light reaction, retinal reflectance spectrum, and hemodynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!