Urocortin belongs to the family of corticotropin-releasing factor (CRF)-like peptides, which play an important role in sensorimotor coordination. CRF induces locomotor activity, and urocortin has an inhibitory effect. Here, we document the regional and subcellular localization of urocortin in the developing rat cerebellum to compare it with CRF. During the first postnatal week, urocortin immunoreactivity (UCN-ir), within the white matter and cerebellar cortex, was strongest in vermal lobules I, II, IX, and X, closely followed by lobules IV, V, and VIII; lobules VI and VII showed the weakest labeling. Cortical immunoreactivity was in the form of puncta that encircled Purkinje cell somata. By postnatal day (PD) 12, UCN-ir had increased appreciably in all lobules. In Purkinje cells, labeling was spread throughout their somata and proximal dendrites. By PD 15, labeling in lobules I-IV appeared to wane, yet still prevailed in the central and posterior lobules. This anterior-to-posterior gradient persisted through to adulthood. The study shows that urocortin and CRF have similar regional distribution profiles during development, suggesting synergistic roles within the vestibulocerebellum. The onset of the adult distributional pattern of urocortin at the stage when rats are capable of fluent walking patterns further strengthens the correlation between CRF-like peptides and postural control. An important difference between urocortin and CRF is the localization of urocortin, and not CRF, within Purkinje cells, implying that urocortin probably has an additional role in modulating the signals emanating from the cerebellar cortex to the deep cerebellar nuclei.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.20062DOI Listing

Publication Analysis

Top Keywords

urocortin crf
12
urocortin
10
pattern urocortin
8
crf-like peptides
8
localization urocortin
8
cerebellar cortex
8
purkinje cells
8
lobules
6
crf
5
postnatal developmental
4

Similar Publications

Corticotropin-releasing factor (CRF) and urocortins (UCN1, UCN2 and UCN3) belong to the same CRF family of neuropeptides. They regulate the neuroendocrine, autonomic and behavioral responses to stress via two CRF receptors (CRF1 and CRF2). Stress, anxiety and depression affects the activity of the hypothalamic-pituitary-adrenal (HPA) axis and the serotoninergic neurotransmission, both being regulated by CRF and CRF-related peptides.

View Article and Find Full Text PDF

While corticosteroids, including cortisol, have conserved osmoregulatory functions, the relative involvement of other stress-related hormones in osmoregulatory processes remains unclear. To address this gap, we initially characterized the gill corticotropin-releasing factor (CRF) system of Atlantic salmon (Salmo salar) and then determined: 1) how it is influenced by osmotic disturbances; 2) whether it is affected by cortisol; and 3) which physiological processes it regulates in the gills. Most CRF system components were expressed in the gills with CRF receptor 2 (crfr2a), CRF binding protein (crfbp1 and crfbp2), and urocortin 2 (ucn2a) being the most abundant.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease is increasingly affecting aging societies and primarily appears in a sporadic form linked to various genetic and environmental factors.
  • The condition can be viewed as an intensified version of the natural aging process of the brain, marked by the buildup of amyloid plaques due to impaired amyloid elimination.
  • The review focuses on the role of specific neuropeptides in accelerating dementia and explores their potential as therapeutic targets to slow down disease progression.
View Article and Find Full Text PDF

Increased CRF-R1 transmission in the nucleus accumbens shell facilitates maternal neglect in lactating rats and mediates anxiety-like behaviour in a sex-specific manner.

Neuropharmacology

March 2025

Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany. Electronic address:

During the transition to motherhood, complex brain adaptations occur to ensure adequate maternal responses to offspring' needs accompanied by reduced anxiety. Among others, the corticotropin-releasing factor (CRF) and oxytocin (OXT) systems have emerged as crucial regulators of these essential postpartum adaptations. Here, we investigated their roles within the nucleus accumbens shell (NAcSh), a central region of the reward and maternal circuits, in maternal neglect of lactating rats.

View Article and Find Full Text PDF

Post-traumatic stress disorder (PTSD) is a multifactorial psychological disorder that affects different neurotransmitter systems, including the central CRH system. CRH acts via the CRHR1 and CRHR2 receptors, which exert opposite effects, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!