Telomeric chromosome rearrangements may cause mental retardation, congenital anomalies, miscarriages, and hematological malignancies. Automated detection of subtle deletions and duplications involving telomeres is essential for high-throughput screening procedures, but impractical when conventional cytogenetic methods are used. Novel real-time PCR quantitative genotyping of subtelomeric amplicons using SYBR-green dye allows high-resolution screening of single copy number gains and losses by their relative quantification against a diploid genome. To assess the applicability of the technique in the screening and diagnosis of subtelomeric imbalances, we describe here a blinded study in which DNA from 20 negative controls and 20 patients with known unbalanced cytogenetic abnormalities involving at least one or more telomeres were analyzed using a novel human subtelomere-specific primer set, producing altogether 86 amplicons, in the SYBR-green I-based real-time quantitative PCR screening approach. Screening of the DNA samples from 20 unrelated controls for copy number polymorphism do not detect any polymorphism in the set of amplicons, but single-copy-number gains and losses were accurately detected by quantitative PCR in all patients, except the copy number alterations of the subtelomeric p-arms of the acrocentric chromosomes in two cases. Furthermore, a detailed mapping of the deletion/translocation breakpoint was demonstrated in two cases by novel real-time PCR "primer-jumping." Because of the simplicity and flexibility of the SYBR-green I-based real-time detection, the primer-set can easily be extended, either to perform further detailed molecular characterization of breakpoints or to include amplicons for the detection and/or analysis of syndromes that are associated with genomic copy number alterations, e.g., deletion/duplication-syndromes and malignant cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.20011DOI Listing

Publication Analysis

Top Keywords

copy number
16
novel real-time
12
quantitative pcr
12
real-time quantitative
8
sybr-green dye
8
involving telomeres
8
real-time pcr
8
amplicons sybr-green
8
gains losses
8
sybr-green i-based
8

Similar Publications

Uterine corpus endometrial carcinoma (UCEC) is a significant cause of cancer-related mortality among women worldwide. Prior research has demonstrated an association between cyclin-dependent kinase inhibitor 2 A (CDKN2A) and various tumors. As a member of the INK4 family, CDKN2A is involved in cell cycle regulation by controlling CDKs.

View Article and Find Full Text PDF

In vivo CRISPR activation screening reveals Chromosome 1q genes VPS72, GBA1, and MRPL9 drive hepatocellular carcinoma.

Cell Mol Gastroenterol Hepatol

January 2025

Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA. Electronic address:

Background & Aims: Hepatocellular carcinoma (HCC) frequently undergoes regional chromosomal amplification, resulting in elevated gene expression levels. We aimed to elucidate the role of these poorly understood genetic changes by employing CRISPR activation (CRISPRa) screening in mouse livers to identify which genes within these amplified loci are cancer driver genes.

Methods: We used data from The Cancer Genome Atlas (TCGA) to identify that frequently copy number-amplified and upregulated genes all reside on human Chromosomes 1q and 8q.

View Article and Find Full Text PDF

Differential detoxification enzyme profiles in C-corn strain and R-rice strain of Spodoptera frugiperda by comparative genomic analysis: insights into host adaptation.

BMC Genomics

January 2025

Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, China.

Background: The fall armyworm (FAW) Spodoptera frugiperda, a highly invasive, polyphagous pest, poses a global agricultural threat. It has two strains, the C-corn and R-rice strains, each with distinct host preferences. This study compares detoxification enzyme gene families across these strains and related Spodoptera species to explore their adaptation to diverse host plant metabolites.

View Article and Find Full Text PDF

Genomic characteristics and phylogenetic relationships of Cutibacterium acnes breast milk isolates.

BMC Microbiol

January 2025

Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China.

Background: Cutibacterium acnes is one of the most commonly found microbes in breast milk. However, little is known about the genomic characteristics of C. acnes isolated from breast milk.

View Article and Find Full Text PDF

Purpose: overexpression/amplification in wild-type (WT) metastatic colorectal cancer (mCRC; human epidermal growth factor receptor 2 [HER2]-positive mCRC) appears to be associated with limited benefit from anti-EGFR antibodies and promising responses to dual-HER2 inhibition; however, comparative efficacy has not been investigated. We conducted a randomized phase II trial to evaluate efficacy and safety of dual-HER2 inhibition against standard-of-care anti-EGFR antibody-based therapy as second/third-line treatment in HER2-positive mCRC.

Methods: Patients with -WT mCRC after central confirmation of HER2 positivity (immunohistochemistry 3+ or 2+ and in situ hybridization amplified [HER2/CEP17 ratio >2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!