Fluorescence resonance energy transfer measurements have revealed that the lever-arm domain of myosin swings when it hydrolyzes Mg-ATP. It is generally accepted that this swing of the lever arm of myosin is the molecular basis of force generation. On the other hand, the possibility that the force might be generated at the interface between actin and myosin cannot be ignored. However, there is a third possibility, namely, that myosin itself generates force without actin. Thus, using recombinant subfragment 1 molecules of Dictyostelium myosin II that were trapped between two functionalized surfaces of a surface-force apparatus, we determined whether myosin itself could actually generate force. Here, we report that, despite the absence of actin, myosin heads themselves have a capacity to generate a force (at least approximately 0.2 pN/molecule) that is coupled to the structural changes. Although the role of actin should not be neglected because muscle physiologically shortens as a result of the interaction between actin and myosin, in this work the focus is on the question of whether the catalytic domain of myosin has the capacity to generate force.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00249-004-0397-0 | DOI Listing |
Food Chem X
January 2025
International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
Different edible portions including meat (lump, claw and backfin) and roe of blue swimming crab () were analyzed. Both meat and roe had high protein content, but a greater fat content was found in roe. All meats showed higher levels of polyunsaturated fatty acids than roe.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
Many cancer cells exhibit increased amounts of paucimannose glycans, which are truncated N-glycan structures rarely found in mammals. Paucimannosidic proteins are proposedly generated within lysosomes and exposed on the cell surface through a yet uncertain mechanism. In this study, we revealed that paucimannosidic proteins are produced by lysosomal glycosidases and secreted via lysosomal exocytosis.
View Article and Find Full Text PDFImmunol Rev
December 2024
Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.
αβT cells protect vertebrates against many diseases, optimizing surveillance using mechanical force to distinguish between pathophysiologic cellular alterations and normal self-constituents. The multi-subunit αβT-cell receptor (TCR) operates outside of thermal equilibrium, harvesting energy via physical forces generated by T-cell motility and actin-myosin machinery. When a peptide-bound major histocompatibility complex molecule (pMHC) on an antigen presenting cell is ligated, the αβTCR on the T cell leverages force to form a catch bond, prolonging bond lifetime, and enhancing antigen discrimination.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
J Gen Physiol
January 2025
Chemistry Department, University of Massachusetts Lowell, Lowell, MA, USA.
Titin is the third contractile filament in the sarcomere, and it plays a critical role in sarcomere integrity and both passive and active tension. Unlike the thick and thin filaments, which are polymers of myosin and actin, respectively, titin is a single protein that spans from Z-disk to M-line. The N2A region within titin has been identified as a signaling hub for the muscle and is shown to be involved in multiple interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!