Sclerosteosis, a skeletal disorder characterized by high bone mass due to increased osteoblast activity, is caused by loss of the SOST gene product, sclerostin. The localization in bone and the mechanism of action of sclerostin are not yet known, but it has been hypothesized that it may act as a bone morphogenetic protein (BMP) antagonist. We show here that SOST/sclerostin is expressed exclusively by osteocytes in mouse and human bone and inhibits the differentiation and mineralization of murine preosteoblastic cells (KS483). Although sclerostin shares some of the actions of the BMP antagonist noggin, we show here that it also has actions distinctly different from it. In contrast to noggin, sclerostin did not inhibit basal alkaline phosphatase (ALP) activity in KS483 cells, nor did it antagonize BMP-stimulated ALP activity in mouse C2C12 cells. In addition, sclerostin had no effect on BMP-stimulated Smad phosphorylation and direct transcriptional activation of MSX-2 and BMP response element reporter constructs in KS483 cells. Its unique localization and action on osteoblasts suggest that sclerostin may be the previously proposed osteocyte-derived factor that is transported to osteoblasts at the bone surface and inhibits bone formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212719PMC
http://dx.doi.org/10.1084/jem.20031454DOI Listing

Publication Analysis

Top Keywords

bmp antagonist
12
bone formation
8
alp activity
8
ks483 cells
8
sclerostin
7
bone
7
sclerostin osteocyte-expressed
4
osteocyte-expressed negative
4
negative regulator
4
regulator bone
4

Similar Publications

Farnesoid X receptor (FXR), a nuclear receptor, is expressed in calvaria and bone marrow stromal cells and plays a role in bone homeostasis. However, the mechanism of FXR-activated osteoblast differentiation remains unclear. In this study, we investigated the regulatory mechanism underlying FXR-activated osteoblast differentiation using bone morphogenetic protein-2 (BMP-2)-induced mouse ST-2 mesenchymal stem cells.

View Article and Find Full Text PDF

Noggin Combined With Human Dental Pulp Stem Cells to Promote Skeletal Muscle Regeneration.

Stem Cells Int

December 2024

Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China.

Article Synopsis
  • Dental pulp stem cells (DPSCs) show promise for muscle injury repair, but their ability to differentiate into muscle cells is currently limited.
  • Treating DPSCs with Noggin, which inhibits bone morphogenetic protein (BMP) signals, enhances myogenic differentiation, increases myogenic markers, and generates satellite-like cells, improving muscle regeneration.
  • Implanting Noggin-treated DPSCs in a mouse model of muscle loss resulted in significant reductions in defect size and scar tissue, indicating that BMP/Smad signaling regulation by Noggin effectively promotes muscle repair.
View Article and Find Full Text PDF

Crucial roles of asprosin in cisplatin-induced ferroptosis and acute kidney injury.

Free Radic Biol Med

February 2025

Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China. Electronic address:

Ferroptosis is a type of non-apoptotic regulated cell death characterized by iron accumulation and lipid peroxidation. Cisplatin is an effective chemotherapy drug with several serious side effects including acute kidney injury (AKI). Asprosin is a peptide contributing to metabolism regulation and metabolic disorders.

View Article and Find Full Text PDF

Therapeutic efficacy with durable responses has been demonstrated with several antibody drugs that block key immune checkpoint receptors, including PD-1, PD-L1, and CTLA-4. Despite the success of these drugs, a substantial proportion of patients do not benefit. Targeting multiple inhibitory pathways simultaneously to augment anti-tumor immunity has proven to be a promising approach.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the effects of saponins (MOS), a traditional Chinese medicine, on the osteogenic differentiation of human umbilical cord-derived mesenchymal stem cells (HUC-MSCs), suggesting potential benefits for osteoporosis treatment.
  • - MOS was found to promote this differentiation in a concentration-dependent manner, enhancing the expression of key osteogenic genes and activating related signaling pathways, including transforming growth factor-β and calcium pathways.
  • - The findings reveal that MOS may work by regulating the BMP-SMAD signaling pathway, highlighting its potential as a therapeutic agent for osteoporosis, especially when combined with stem cell therapy.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!