A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Xenopus laevis macrophage migration inhibitory factor is essential for axis formation and neural development. | LitMetric

Macrophage migration inhibitory factor (MIF) is an immunoregulatory cytokine involved in both acquired and innate immunity. MIF also has many functions outside the immune system, such as isomerase and oxidoreductase activities and control of cell proliferation. Considering the involvement of MIF in various intra- and extracellular events, we expected that MIF might also be important in vertebrate development. To elucidate the possible role of MIF in developmental processes, we knocked down MIF in embryos of the African clawed frog Xenopus laevis, using MIF-specific morpholino oligomers (MOs). For the synthesis of the MOs, we cloned a cDNA for a Xenopus homolog of MIF. Sequence analysis, determination of the isomerase activity, and x-ray crystallographic analysis revealed that the protein encoded by the cDNA was the ortholog of mammalian MIF. We carried out whole mount in situ hybridization of MIF mRNA and found that MIF was expressed at high levels in the neural tissues of normal embryos. Although early embryogenesis of MO-injected embryos proceeded normally until the gastrula stage, their neurulation was completely inhibited. At the tailbud stage, the MO-injected embryos lacked neural and mesodermal tissues, and also showed severe defects in their head and tail structures. Thus, MIF was found to be essential for axis formation and neural development of Xenopus embryos.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M311416200DOI Listing

Publication Analysis

Top Keywords

mif
11
xenopus laevis
8
macrophage migration
8
migration inhibitory
8
inhibitory factor
8
essential axis
8
axis formation
8
formation neural
8
neural development
8
mo-injected embryos
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!