Comparative 16S rDNA sequence analysis indicates that two distinct sublineages, with a sequence dissimilarity of >4 % (bootstrap value, 100 %), exist within the genus RALSTONIA: the Ralstonia eutropha lineage, which comprises Ralstonia basilensis, Ralstonia campinensis, R. eutropha, Ralstonia gilardii, Ralstonia metallidurans, Ralstonia oxalatica, Ralstonia paucula, Ralstonia respiraculi and Ralstonia taiwanensis; and the Ralstonia pickettii lineage, which comprises Ralstonia insidiosa, Ralstonia mannitolilytica, R. pickettii, Ralstonia solanacearum and Ralstonia syzygii comb. nov. (previously Pseudomonas syzygii). This phylogenetic discrimination is supported by phenotypic differences. Members of the R. eutropha lineage have peritrichous flagella, do not produce acids from glucose and are susceptible to colistin, in contrast to members of the R. pickettii lineage, which have one or more polar flagella, produce acid from several carbohydrates and are colistin-resistant. Members of the R. pickettii lineage are viable for up to 6 days on tryptic soy agar at 25 degrees C, whereas members of the R. eutropha lineage are viable for longer than 9 days. It is proposed that species of the R. eutropha lineage should be classified in a novel genus, Wautersia gen. nov. Finally, based on the literature and new DNA-DNA hybridization data, it is proposed that Pseudomonas syzygii should be renamed Ralstonia syzygii comb. nov.

Download full-text PDF

Source
http://dx.doi.org/10.1099/ijs.0.02754-0DOI Listing

Publication Analysis

Top Keywords

ralstonia
18
eutropha lineage
16
comb nov
12
pickettii lineage
12
wautersia gen
8
gen nov
8
novel genus
8
lineage
8
ralstonia eutropha
8
lineage comprises
8

Similar Publications

Gram-negative bacterial pathogens inject effector proteins inside plant cells using a type III secretion system. These effectors manipulate plant cellular functions and suppress the plant immune system in order to promote bacterial proliferation. Despite the fact that bacterial effectors are exogenous threatening proteins potentially exposed to the protein degradation systems inside plant cells, effectors are relative stable and able to perform their virulence functions.

View Article and Find Full Text PDF

CprA is a short-chain dehydrogenase/reductase (SDR) that contributes to resistance against colistin and antimicrobial peptides. The cprA gene is conserved across Pseudomonas aeruginosa clades and its expression is directly regulated by the two-component system PmrAB. We have shown that cprA expression leads to the production of outer membrane vesicles (OMVs) that block autophagic flux and have a greater capacity to activate the non-canonical inflammasome pathway.

View Article and Find Full Text PDF

Background: The carcinogenesis mechanism of early-stage lung cancer (ESLC) remains unclear. Microbial dysbiosis is closely related to tumor development. This study aimed to analyze the relationship between microbiota dysbiosis in ESLC.

View Article and Find Full Text PDF

First Report of Bacterial Wilt of Ginger Caused by in the Continental United States.

Plant Dis

January 2025

University of Minnesota Twin Cities, Department of Plant Pathology, 1991 Upper Buford circle, 495 Borlaug Hall, Saint Paul, Minnesota, United States, 55108;

Ginger (Zingiber officinale) is an herbaceous perennial in the Zingiberaceae family grown primarily in tropical to subtropical biomes as a culinary spice, a traditional medicine, and a landscaping plant. While ginger grows at soil temperatures above 20°C, several farmers in the upper Midwestern US farmers grows short-season ginger in high tunnels. In 2023 and 2024, growers in southeastern Minnesota reported a new disease of ginger.

View Article and Find Full Text PDF

Understanding the change in plant-associated microbial diversity and secondary metabolite biosynthesis in medicinal plants due to their cultivation in non-natural habitat (NNH) is important to maintain their therapeutic importance. Here, the bacterial endomicrobiome of Podophyllum hexandrum plants of natural habitat (NH; Kardang and Triloknath locations) and NNH (Palampur location) was identified and its association with the biosynthesis of podophyllotoxin (PTOX) was revealed. Rhizomes (source of PTOX) of plants of NH had highest endophytic bacterial diversity compared to NNH-plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!