Background: Progression of heart failure after initial myocardial injury is mediated in part by various redundant inflammatory mediators, including the widely expressed cyclooxygenase-2 (COX-2). Because COX-2 inhibitors are useful in treating many inflammation-mediated diseases, we asked whether COX-2 inhibition can attenuate heart failure progression.
Methods And Results: Heart failure was experimentally induced in 100 mice by administration of doxorubicin (4 mg. kg(-1). wk(-1) for 6 weeks). Beginning at day 42, mice were fed daily with either COX-2 inhibitor-containing mice chow (n=50) or plain mice chow (controls; n=50). Left ventricular ejection fraction was evaluated as a measure of heart failure by a novel method of transthoracic echocardiography (with intravascular ultrasound catheters) at baseline and on days 42, 56, and 70. From baseline to study termination, left ventricular ejection fraction in COX-2 inhibitor-treated mice decreased significantly less than in control mice (9% versus 29%, P<0.01). Mortality was significantly lower for COX-2 inhibitor-treated mice than for control mice (18% versus 38%, P<0.01). These results were confirmed in a revalidation study in COX-2 inhibitor-treated mice (n=25) and controls (n=25). That study revealed that the hearts from control mice weighed roughly the same as hearts from COX-2 inhibitor-treated mice but showed more extensive signs of cardiomyopathy (as determined by pathological analysis by an independent, blinded observer) and higher levels of COX-2 proteins (as determined by immunoblotting [6442+/-1635 versus 4300+/-2408 arbitrary units, P<0.022]).
Conclusions: COX-2 inhibitors can attenuate the progression of heart failure in a murine model of doxorubicin-induced heart failure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.CIR.0000121354.34067.48 | DOI Listing |
Pharmazie
December 2024
Department of Hospital Pharmaceutics, School of Pharmacy, Showa University, Tokyo, Japan.
This study aimed to determine the risk of emergency admission by ambulance in patients taking potentially inappropriate medications (PIMs). We included 273,932 patients aged over 75 years of age admitted between January 1, 2019, and December 31, 2019, using the Japan Medical Data Center medical insurance database containing anonymized patient data. We excluded patients without a history of admission.
View Article and Find Full Text PDFHypertens Res
January 2025
Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Japan.
Hypertens Res
January 2025
School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; #155 Section 2, Linong Street, Taipei, 112, Taiwan.
To explore the effects of obstructive sleep apnea (OSA) on nocturnal changes in blood pressure (BP), we enrolled 2037 participants who underwent polysomnography (PSG) between 2019 and 2020 and examined BP changes before and after sleep. BP was measured in the evening and the following morning using an electronic wrist sphygmomanometer in the supine position. The severity of OSA was determined by PSG and graded based on the apnea/hypopnea index (AHI).
View Article and Find Full Text PDFPediatr Nephrol
January 2025
Department of Anesthesiology, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610000, Sichuan, China.
Background: Cardiac surgery-associated acute kidney injury (CSA-AKI) is a notably common complication in pediatrics, with an incidence rate ranging from 15 to 64%. This rate is significantly higher than that observed in adults. Currently, there is a lack of substantial evidence regarding the association between intraoperative blood pressure variability (BPV) during cardiac surgery with cardiopulmonary bypass (CPB) and the development of AKI in pediatric patients.
View Article and Find Full Text PDFCurr Top Dev Biol
January 2025
Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States. Electronic address:
Retinoids, particularly all-trans-retinoic acid (ATRA), play crucial roles in various physiological processes, including development, immune response, and reproduction, by regulating gene transcription through nuclear receptors. This review explores the biosynthetic pathways, homeostatic mechanisms, and the significance of retinoid-binding proteins in maintaining ATRA levels. It highlights the intricate balance required for ATRA homeostasis, emphasizing that both excess and deficiency can lead to severe developmental and health consequences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!