Background: Studies have shown that neuroleptics regulate expression of the transcription factor FosB/DeltaFosB in the striatum, including the accumbens and caudate-putamen; however, the striatum is also divided into another structural dimension, the striosome and matrix compartments. The precise distribution of FosB/DeltaFosB induced by chronic neuroleptics in these striatal compartments is poorly understood.

Methods: Rats received either single acute injections or chronic injections of clozapine (0 or 20 mg/kg, intraperitoneally [IP]), olanzapine (0 or 5 mg/kg, IP), or haloperidol (0 or 1.5 mg/kg, IP) for 25 days. The levels and compartmental distribution of FosB/DeltaFosB were examined.

Results: Chronic clozapine induced clustered FosB/DeltaFosB expression within striosomes of the caudate-putamen. This pattern was due to increased levels of FosB/DeltaFosB in striosomes within the ventrolateral caudate-putamen and reduced levels of basal FosB/DeltaFosB in the matrix in the entire caudate-putamen. In contrast, chronic haloperidol increased FosB/DeltaFosB equally within the matrix and striosomes throughout the entire caudate-putamen. Chronic olanzapine induced an intermediate pattern.

Conclusions: The relative absence of FosB/DeltaFosB expression in the matrix correlates with the lack of parkinsonism of atypical neuroleptics. Expression of FosB/DeltaFosB in the matrix may contribute to parkinsonism of typical neuroleptics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopsych.2003.08.008DOI Listing

Publication Analysis

Top Keywords

fosb/deltafosb expression
12
fosb/deltafosb
10
atypical neuroleptics
8
distribution fosb/deltafosb
8
fosb/deltafosb matrix
8
entire caudate-putamen
8
chronic
6
neuroleptics
5
expression
5
caudate-putamen
5

Similar Publications

High-Fructose Diet and Chronic Unpredictable Stress Modify Each Other's Neurobehavioral Effects in Female Rats.

Int J Mol Sci

October 2024

Laboratory of Molecular Neurobiology and Behavior, Department of Neurobiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia.

A pervasive exposure to stressors and the consumption of fructose-containing beverages usually go hand-in-hand in everyday life. In contrast to their metabolic outcomes, their impact on the brain and behavior is still understudied. We examined the behavioral response to a novelty (open field test), the expression of biochemical indicators of neuronal activity (Egr1 and FosB/ΔFosB), the synaptic potentiation (CaMKIIα and pCaMKII), the synaptic plasticity (synaptophysin, PSD95, gephyrin, and drebrin), and the GABAergic system (parvalbumin and GAD67), along with the glucocorticoid receptor (GR) and AMPK, in the medial prefrontal cortex of female Wistar rats subjected to liquid fructose supplementation (F), chronic unpredictable stress (S), or both (SF) over 9 weeks.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a neurodevelopmental disorder accompanied by narrow interests, difficulties in communication and social interaction, and repetitive behavior. In addition, ASD is frequently associated with eating and feeding problems. Although the symptoms of ASD are more likely to be observed in boys, the prevalence of eating disorders is more common in females.

View Article and Find Full Text PDF

Mast cells are innate immune cells that play a crucial role in numerous physiological processes across tissues by releasing pre-stored and newly synthesized mediators in response to stimuli, an activity largely driven by changes in gene expression. Given their widespread influence, dysfunction in mast cells can contribute to a variety of pathologies including allergies, long COVID, and autoimmune and neuroinflammatory disorders. Despite this, the specific transcriptional mechanisms that control mast cell mediator release remain poorly understood, significantly hindering the development of effective therapeutic strategies.

View Article and Find Full Text PDF

Alcohol use disorder (AUD) requires new neurobiological targets. Problematic drinking involves underactive indirect pathway medium spiny neurons (iMSNs) that subserve adaptive behavioral selection vs. overactive direct pathway MSNs (dMSNs) that promote drinking, with a shift from ventromedial to dorsolateral striatal (VMS, DLS) control of EtOH-related behavior.

View Article and Find Full Text PDF

PACAP-PAC1R modulates fear extinction via the ventromedial hypothalamus.

Nat Commun

July 2022

Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.

Exposure to traumatic stress can lead to fear dysregulation, which has been associated with posttraumatic stress disorder (PTSD). Previous work showed that a polymorphism in the PACAP-PAC1R (pituitary adenylate cyclase-activating polypeptide) system is associated with PTSD risk in women, and PACAP (ADCYAP1)-PAC1R (ADCYAP1R1) are highly expressed in the hypothalamus. Here, we show that female mice subjected to acute stress immobilization (IMO) have fear extinction impairments related to Adcyap1 and Adcyap1r1 mRNA upregulation in the hypothalamus, PACAP-c-Fos downregulation in the Medial Amygdala (MeA), and PACAP-FosB/ΔFosB upregulation in the Ventromedial Hypothalamus dorsomedial part (VMHdm).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!