Structure of the functional fragment of auxilin required for catalytic uncoating of clathrin-coated vesicles.

Biochemistry

Laboratory of Biophysical Chemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-0301, USA.

Published: March 2004

The three-dimensional structure of the C-terminal 20 kDa portion of auxilin, which consists of the clathrin binding region and the C-terminal J-domain, has been determined by NMR. Auxilin is an Hsp40 family protein that catalytically supports the uncoating of clathrin-coated vesicles through recruitment of Hsc70 in an ATP hydrolysis-driven process. This 20 kDa auxilin construct contains the minimal sequential region required to uncoat clathrin-coated vesicles catalytically. The tertiary structure consists of six helices, where the first three are unique to auxilin and believed to be important in the catalytic uncoating of clathrin. The last three helices correspond to the canonical J-domain of Hsp40 proteins. The first helix, helix 1, which contains a conserved FEDLL motif believed to be necessary for clathrin binding, is transient and not packed against the rest of the structure. Helix 1 is joined to helix 2 by a flexible linker. Helix 2 packs loosely against the J-domain surface, whereas helix 3 packs tightly and makes critical contributions to the J-domain core. A long insert loop, also unique to the auxilin J-domain, is seen between helix 4 and helix 5. Comparison with a previously reported structure of auxilin containing only helices 3-6 shows a significant difference in the invariant HPD segment of the J-domain. The region where helix 1 is located corresponds to the expected region of the unstructured G/F-rich domain seen in DnaJ, i.e., the canonical N-terminal J-domain protein. In contrast, the location of helix 1 differs from the substrate binding regions of two other Hsp40 proteins, Escherichia coli Hsc20 and viral large T antigen. The variety of biological functions performed by Hsp40 proteins such as auxilin, as well as the observed differences in the structure and function of their substrate binding regions, supports the notion that Hsp40 proteins act as target-specific adaptors that recruit their more general Hsp70 partners to specific biological roles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi0354740DOI Listing

Publication Analysis

Top Keywords

hsp40 proteins
16
clathrin-coated vesicles
12
helix
10
auxilin
8
catalytic uncoating
8
uncoating clathrin-coated
8
clathrin binding
8
unique auxilin
8
helix helix
8
helix packs
8

Similar Publications

Design principles to tailor Hsp104 therapeutics.

Cell Rep

December 2024

Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address:

The hexameric AAA+ disaggregase, Hsp104, collaborates with Hsp70 and Hsp40 via its autoregulatory middle domain (MD) to solubilize aggregated proteins. However, how ATP- or ADP-specific MD configurations regulate Hsp104 hexamers remains poorly understood. Here, we define an ATP-specific network of interprotomer contacts between nucleotide-binding domain 1 (NBD1) and MD helix L1, which tunes Hsp70 collaboration.

View Article and Find Full Text PDF

Purpose: The aim of this study was to elucidate the effect of itaconate (ITA) on experimental autoimmune uveitis (EAU), to explore its potential mechanism, and to identify potential therapeutic targets.

Methods: We established an animal model of EAU by constructing an immune map of mice treated with ITA and exploring the therapeutic mechanism of ITA by single-cell RNA sequencing and flow cytometry.

Results: ITA mitigated ocular inflammation associated with EAU and reversed the pathogenic differentiation linked to Th17 induction by EAU, along with the reactive oxygen species (ROS) and oxidative stress pathways.

View Article and Find Full Text PDF

The dynamic balance between formation and disaggregation of amyloid fibrils is associated with many neurodegenerative diseases. Multiple chaperones interact with and disaggregate amyloid fibrils, which impacts amyloid propagation and cellular phenotypes. However, it remains poorly understood whether and how site-specific binding of chaperones to amyloids facilitates the concerted disaggregation process and modulates physiological consequences in vivo.

View Article and Find Full Text PDF

Nanographene oxide (nGO) nanoparticles (NPs) have unique properties and are widely used in various fields, including biomedicine. These NPs, however, also exhibit toxic ef-fects and therefore, the understanding of the molecular mechanism of nGO toxicity is very im-portant mainly for the nanomedicine, especially the cancer therapy. This study aimed to examine the impact of nGO NPs on the expression of genes associated with endoplasmic reticulum (ER) stress, proliferation, and cancerogenesis in both normal human astrocytes and U87MG glioblas-toma cells.

View Article and Find Full Text PDF

Proteostasis, the maintenance of cellular protein balance, is essential for cell viability and is highly conserved across all organisms. Newly synthesized proteins, or "clients," undergo sequential processing by Hsp40, Hsp70, and Hsp90 chaperones to achieve proper folding and functionality. Despite extensive characterization of post-translational modifications (PTMs) on Hsp70 and Hsp90, the modifications on Hsp40 remain less understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!