Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Increasingly, scientists have begun to tackle gene functions and other complex regulatory processes by studying organisms at the global scales for various levels of biological organization, ranging from genomes to metabolomes and physiomes. Meanwhile, new bioinformatics methods have been developed for inferring protein function using associative analysis of functional properties to complement the traditional sequence homology-based methods. To fully exploit the value of the high-throughput system biology data and to facilitate protein functional studies requires bioinformatics infrastructures that support both data integration and associative analysis. The iProClass database, designed to serve as a framework for data integration in a distributed networking environment, provides comprehensive descriptions of all proteins, with rich links to over 50 databases of protein family, function, pathway, interaction, modification, structure, genome, ontology, literature, and taxonomy. In particular, the database is organized with PIRSF family classification and maps to other family, function, and structure classification schemes. Coupled with the underlying taxonomic information for complete genomes, the iProClass system (http://pir.georgetown.edu/iproclass/) supports associative studies of protein family, domain, function, and structure. A case study of the phosphoglycerate mutases illustrates a systematic approach for protein family and phylogenetic analysis. Such studies may serve as a basis for further analysis of protein functional evolution, and its relationship to the co-evolution of metabolic pathways, cellular networks, and organisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiolchem.2003.10.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!