Lateral cervical nucleus projections to periaqueductal gray matter in cat.

J Comp Neurol

Department of Anatomy and Embryology, Faculty of Medical Sciences, Rijksuniversiteit Groningen, 9713 AV Groningen, The Netherlands.

Published: April 2004

The midbrain periaqueductal gray matter (PAG) integrates the basic responses necessary for survival of individuals and species. Examples are defense behaviors such as fight, flight, and freezing, but also sexual behavior, vocalization, and micturition. To control these behaviors the PAG depends on strong input from more rostrally located limbic structures, as well as from afferent input from the lower brainstem and spinal cord. Mouton and Holstege (2000, J Comp Neurol 428:389-410) showed that there exist at least five different groups of spino-PAG neurons, each of which is thought to subserve a specific function. The lateral cervical nucleus (LCN) in the upper cervical cord is not among these five groups. The LCN relays information from hair receptors and noxious information and projects strongly to the contralateral ventroposterior and posterior regions of thalamus and to intermediate and deep tectal layers. The question is whether the LCN also projects to the PAG. The present study in cat, using retrograde and anterograde tracing techniques, showed that neurons located in the lateral two-thirds of the LCN send fibers to the lateral part of the PAG, predominantly at rostrocaudal levels A0.6-P0.2. This part of the PAG is known to be involved in flight behavior. A concept is put forward according to which the LCN-PAG pathway alerts the animal about the presence of cutaneous stimuli that might represent danger, necessitating flight. J. Comp. Neurol. 471:434-445, 2004.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.20031DOI Listing

Publication Analysis

Top Keywords

lateral cervical
8
cervical nucleus
8
periaqueductal gray
8
gray matter
8
comp neurol
8
pag
5
lateral
4
nucleus projections
4
projections periaqueductal
4
matter cat
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!