Objectives: Dynamic cerebral autoregulation (CA) is impaired after stroke. Methods employed to assess this phenomenon usually involve deliberate alterations in blood pressure (BP) by physical means. We performed a pilot study to assess dynamic CA in acute stroke patients using a novel technique of combining transcranial Doppler (TCD) ultrasonography with rhythmic handgrip.

Methods: Ten patients with ischaemic stroke in the middle cerebral artery (MCA) territory were studied. We performed continuous recordings of bilateral MCA velocities and used rhythmic handgrip to induce BP oscillations. Changes in autoregulation were indicated by changes in phase shift and gain of MCA velocity in relation to BP. Patients were examined at <7 days, 6 weeks, and 3 months after stroke.

Results: There were no significant differences in phase shift or gain between the affected and unaffected cerebral hemispheres. Combining the results from both hemispheres, there was a trend of increasing phase shift (P=0.04) and decreasing gain (P=0.24) over the first three months after stroke, indicating improving CA. Rhythmic handgrip produced an average percentage change in BP (peak-to-trough) of 10% around the mean, and the frequency of the induced BP oscillations was very similar to that of the rhythmic handgrip.

Conclusions: Combining TCD with rhythmic handgrip appeared to be a useful technique for assessing dynamic CA and it deserves further studies. In this pilot study, there was some evidence that CA might improve up to 3 months after ischaemic stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00126097-200402000-00002DOI Listing

Publication Analysis

Top Keywords

dynamic cerebral
8
cerebral autoregulation
8
novel technique
8
technique combining
8
combining transcranial
8
transcranial doppler
8
ultrasonography rhythmic
8
rhythmic handgrip
8
assessing dynamic
4
stroke
4

Similar Publications

Rats and mice rapidly update timed behaviors.

Anim Cogn

January 2025

Neuroscience Department, Oberlin College, 173 Lorain St, Oberlin, OH, USA.

Keeping track of time intervals is a crucial aspect of behavior and cognition. Many theoretical models of how the brain times behavior make predictions for steady-state performance of well-learned intervals, but the rate of learning intervals in these models varies greatly, ranging from one-shot learning to learning over thousands of trials. Here, we explored how quickly rats and mice adapt to changes in interval durations using a serial fixed-interval task.

View Article and Find Full Text PDF

Shorter and inflexible intrinsic neural timescales of the self in schizophrenia.

J Psychiatry Neurosci

January 2025

From the Faculty of Medicine, University of Ottawa, Ottawa, Ont. (Djimbouon); the Mind, Brain Imaging and Neuroethics Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre, University of Ottawa, Ottawa, Ont. (Djimbouon, Northoff); the Faculty of Mathematics and Natural Sciences, Institute of Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany (Klar); and the Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany (Klar).

Background: Schizophrenia is hypothesized to involve a disturbance in the temporal dynamics of self-processing, specifically within the interoceptive, exteroceptive, and cognitive layers of the self. This study aimed to investigate the intrinsic neural timescales (INTs) within these self-processing layers among people with schizophrenia.

Methods: We conducted a functional magnetic resonance imaging (fMRI) study to investigate INTs, as measured by the autocorrelation window, among people with schizophrenia and healthy controls during both resting-state and task (memory encoding and retrieval) conditions.

View Article and Find Full Text PDF

Spatiotemporal network dynamics and structural correlates in the human cerebral cortex in vitro.

Prog Neurobiol

January 2025

Institute of Biomedical Investigations August Pi i Sunyer (IDIBAPS), Systems Neuroscience, 08036 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain. Electronic address:

Elucidating human cerebral cortex function is essential for understanding the physiological basis of both healthy and pathological brain states. We obtained extracellular local field potential recordings from cortical slices of neocortical tissue from refractory epilepsy patients. Multi-electrode recordings were combined with histological information, providing a two-dimensional spatiotemporal characterization of human cortical dynamics in control conditions and following modulation of the excitation/inhibition balance.

View Article and Find Full Text PDF

Biotransformation of Ganoderma lucidum and Hericium erinaceus for ex vivo gut-brain axis modulation and mood-related outcomes in humans: CREB/BDNF signaling and microbiota-driven synergies.

J Ethnopharmacol

January 2025

Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; Department of Biochemistry and Toxicology, University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland. Electronic address:

Background: The human gut microbiota plays a crucial role in various aspects of health, extending beyond digestion and nutrient absorption. Ganoderma lucidum (Reishi) and Hericium erinaceus (Lion's Mane), traditional medicinal mushrooms, have garnered interest due to their potential to exert positive health effects. The aim of our study was to investigate the molecular impact of Reishi and Lion's Mane on mood regulation through the gut-brain axis.

View Article and Find Full Text PDF

Temporal neural dynamics of the competition between extrinsic and intrinsic grouping principles in vision: an ERP study.

Neuropsychologia

January 2025

Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain; Dpto. Psicología Experimental, Procesos Cognitivos y Logopedia, Universidad Complutense de Madrid, Madrid, Spain; Centro de Investigación Nebrija en Cognición (CINC), Universidad Nebrija, Madrid, Spain.

Previous research has explored the brain correlates of perceptual grouping but, to our knowledge, no preceding study has investigated the neural dynamics of the competition between intrinsic and extrinsic grouping principles in vision. The present event-related potentials (ERPs) study aimed at characterizing the temporal neural dynamics of the direct competition between extrinsic (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!