Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Direct-current electric fields mediate motility (galvanotaxis) of many cell types. In 3T3 fibroblasts, electric fields increased the proportion, speed and cathodal directionality of motile cells. Analogous to fibroblasts' spontaneous migration, we initially hypothesized that reorientation of microtubule components modulates galvanotaxis. However, cells with intact microtubules did not reorient them in the field and cells without microtubules still migrated, albeit slowly, thus disproving the hypothesis. We next proposed that, in monolayers wounded and placed in an electric field, reorientation of microtubule organizing centers and stable, detyrosinated microtubules towards the wound edge is necessary and/or sufficient for migration. This hypothesis was negated because field exposure mediated migration of unoriented, cathode-facing cells and curtailed migration of oriented, anode-facing cells. This led us to propose that ablating microtubule detyrosination would not affect galvanotaxis. Surprisingly, preventing microtubule detyrosination increased motility speed, suggesting that detyrosination inhibits galvanotaxis. Microtubules might enhance adhesion/de-adhesion remodeling during galvanotaxis; thus, electric fields might more effectively mediate motility of cells poorly or dynamically attached to substrata. Consistent with this hypothesis, incompletely spread cells migrated more rapidly than fully spread cells. Also, overexpression of PAK4, a Cdc42-activated kinase that decreases adhesion, enhanced galvanotaxis speed, whereas its lack decreased speed. Thus, electric fields mediate fibroblast migration via participation of microtubules and adhesive components, but their participation differs from that during spontaneous motility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.00986 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!