Vascular constructs were formed by embedding rat aortic smooth muscle cells in three-dimensional matrices of Type I collagen, fibrin, or a mixture of collagen and fibrin in a 1:1 ratio, at total matrix protein concentrations of 2 and 4 mg/ml. Morphological and mechanical properties were evaluated after 6 days in culture, and the effect of cyclic mechanical strain on collagen-fibrin mixture constructs was also studied. Constructs made with the lower protein concentration compacted to the greatest degree, and fibrin was found to enhance gel compaction. Each matrix type exhibited a characteristic stress-strain profile. Pure collagen had the highest linear modulus and pure fibrin had the lowest. The ultimate tensile stress was strongly dependent on the degree of gel compaction, and collagen-fibrin mixtures at 2mg/ml total protein content exhibited the highest values. Application of cyclic mechanical strain to collagen-fibrin mixture constructs caused a significant increase in gel compaction and a decrease in cell proliferation. The linear modulus, ultimate tensile stress and toughness of the constructs were all augmented by mechanical strain. These results demonstrate that the properties of engineered vascular tissues can be modulated by the combination of selected extracellular matrix components, and the application of mechanical stimulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2003.10.073 | DOI Listing |
Micromachines (Basel)
December 2024
Department of Mechanical Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan.
We developed a portable microfluidic system that combines spontaneous lumen formation from human umbilical endothelial cells (HUVECs) in fibrin-collagen hydrogels with active perfusion controlled by a braille actuator. Adaptive interstitial flow and feedthrough perfusion switching enabled the successful culture of spontaneously formed naturally branched lumens for more than one month. We obtained many large-area (2 mm × 3 mm) long-term (more than 30 days per run) time-lapse image datasets of the in vitro luminal network using this microfluidic system.
View Article and Find Full Text PDFAdv Wound Care (New Rochelle)
January 2025
Kenatha Scientific Consulting LLC, Fort Worth, Texas, USA.
SN514 is a thermolysin-like enzyme under development as a debrider. Preclinical and non-clinical studies supported a first in human healthy volunteer study to predict the need for protection of periwound skin. Pharmacologic activity testing compared digestion of collagen, fibrin, and elastin with relevant enzymes.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Anesthesiology, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku 113-8510, Tokyo, Japan.
The hemostatic function of platelets is complementary to blood coagulation. However, traditional platelet function tests have primarily focused on measuring platelet aggregation, reducing their clinical effectiveness for antiplatelet drug monitoring. To address this limitation, we propose a new test principle that evaluates platelet function and the effects of antiplatelet drugs through blood coagulation reactions.
View Article and Find Full Text PDFJMIR Res Protoc
January 2025
Department of Research and Development, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, India.
Background: Injectable platelet-rich fibrin (i-PRF) has the capacity to release great amounts of several growth factors, as well as to stimulate increased fibroblast migration and the expression of collagen, transforming growth factor β, and platelet-derived growth factor. Consequently, i-PRF can be used as a bioactive agent to promote periodontal tissue regeneration.
Objective: We aim to compare and evaluate the effectiveness of i-PRF in periodontal tissue regeneration.
Front Bioeng Biotechnol
January 2025
State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China.
Objectives: Platelet concentrates (PCs), which are blood products that are abundant in platelets and growth factors, have become pivotal in treating maxillofacial tissue lesions due to their capacity for promoting bone and soft tissue recovery. This review will provide some recent progress of the use of platelet concentrates to treat lesions on maxillofacial tissues.
Subjects: We reviewed the mechanisms by which PCs promote wound healing and tissue recovery and summarized the application of PCs in the treatment of lesions on maxillofacial tissues, including medication-related osteonecrosis of the jaw, post-extraction wound healing, implant surgery, temporomandibular joint diseases, and periodontal tissue restoration.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!