A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of hybrid materials based on hydroxyethylmethacrylate as supports for improving cell adhesion and proliferation. | LitMetric

A novel hydrogel based on 2-hydroxyethylmethacrylate and fumed silica nanoparticles is presented. The filler was mixed at increasing amount (3-40% w/w) to the organic monomer, before accomplish thermal polymerization. The hybrid composite materials obtained were characterized as far as concern the physical-chemical stability and sorption behaviour in water and water solutions. The novel hybrid hydrogels were compared to poly(hydroxyethylmethacrylate) (pHEMA) on cytocompatibility and ability to elicit cell adhesion and proliferation. These in vitro assays showed that the first ones were supporting cell growth better then pHEMA, moreover experiments on murine fibroblasts showed improved adhesion and proliferation with the increase of the nanomeric filler content. For a more physiological response, the in vitro tests should match biomaterials with cell populations typical of the implant site. Therefore, in view of future applications of these composites as scaffolds for bone engineering, in a successive step of our research we selected primary cultures of human osteoblasts (OB) as the most appropriate models to study the in vitro performance of these materials. The preliminary results obtained confirmed the remarkable improvement of OB adhesion properties of the new hybrids with respect to pure pHEMA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2003.10.059DOI Listing

Publication Analysis

Top Keywords

adhesion proliferation
12
cell adhesion
8
development hybrid
4
hybrid materials
4
materials based
4
based hydroxyethylmethacrylate
4
hydroxyethylmethacrylate supports
4
supports improving
4
cell
4
improving cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!