Fluvastatin inhibits raft dependent Fcgamma receptor signalling in human monocytes.

Atherosclerosis

Division of Cardiovascular & Medical Sciences, University of Glasgow, Western Infirmary, Dumbarton Road, Glasgow G12 8QQ, UK.

Published: February 2004

Statins inhibit HMG-CoA reductase and thus block cholesterol and isoprenoid biosynthesis. Since statins also have anti-inflammatory effects, we investigated the effect of fluvastatin on monocyte Fcgamma receptor function. Fluvastatin (0.5-20 microM) inhibited Fcgamma receptor signal transduction at the level of tyrosine kinase activation, in a time and dose dependent manner. Initiation of tyrosine phosphorylation is not thought to involve prenylated proteins; thus, we hypothesised that fluvastatin might disrupt cholesterol and sphingolipid membrane rafts to impair signalling. Consistent with this hypothesis, fluvastatin decreased (and mevalonate rescued) signalling molecules within membrane rafts in parallel with effects on tyrosine phosphorylation events. Raft integrity was unaffected by prenyl transferase inhibitors. In addition, Fcgamma receptor mediated immune complex trafficking, activation of MAP kinases (ERK and p38), and downstream inflammatory mediator release (MMP-1 and IL-6) were blocked by fluvastatin. Thus, HMG-CoA reductase inhibition alters immune receptor signalling by disrupting membrane rafts essential for the initiation of signal transduction. Inhibition of Fcgamma receptor function may limit development and progression of atherosclerosis by decreasing monocyte/macrophage inflammatory mediator release. Since many receptors utilise cholesterol rich rafts this mechanism may have broader significance given the pleiotropic effects of statins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.atherosclerosis.2003.11.004DOI Listing

Publication Analysis

Top Keywords

fcgamma receptor
20
membrane rafts
12
receptor signalling
8
hmg-coa reductase
8
receptor function
8
signal transduction
8
tyrosine phosphorylation
8
inflammatory mediator
8
mediator release
8
fluvastatin
6

Similar Publications

The continuing emergence of immune evasive SARS-CoV-2 variants and the previous SARS-CoV-1 outbreak collectively underscore the need for broadly protective sarbecovirus vaccines. Targeting the conserved S2 subunit of SARS-CoV-2 is a particularly promising approach to elicit broad protection. Here, we describe a nanoparticle vaccine displaying multiple copies of the SARS-CoV-1 S2 subunit.

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) improve survival of patients with mature B-cell malignancies. Fcγ-receptor dependent effector mechanisms kill tumor cells but can promote antigen loss through trogocytosis, contributing to treatment failures. Cell-bound mAbs trigger the complement cascade to deposit C3 activation fragments and lyse cells.

View Article and Find Full Text PDF

Immunoglobulin GM (γ marker) and KM (κ marker) allotypes-encoded by immunoglobulin heavy chain G (IGHG) and immunoglobulin κ constant (IGKC) genes-have been shown to be associated with immune responsiveness to a variety of self and nonself antigens. The aim of the present investigation was to determine whether allelic variation at the GM and KM loci was associated with antibody responsiveness to poly-N-acetyl-D-glucosamine (PNAG), a broadly-conserved surface polysaccharide expressed by many microbial pathogens. In addition, we wished to determine whether Fcγ receptor 2 A (FCGR2A) genotypes, which have been shown to be risk factors for some pathogens, also influenced antibody responses to PNAG.

View Article and Find Full Text PDF

FcγR1-Expressing Cell Membrane-Coated Nanoparticle (FcγR1-CMNP) for T-Cell-Engaging Bispecific Nanoantibody Construction.

ACS Appl Mater Interfaces

January 2025

School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.

T-cell-engaging bispecific antibodies (BiTEs), which can simultaneously bind to antigens on tumor cells and T cells, show good potential in cancer immunotherapy. A practical and feasible approach for emulating BiTEs involves immobilizing two types of monoclonal antibodies (mAbs) onto a single nanoparticle; however, this approach involves complex immobilization processes and chemical reactions. To overcome these challenges, we achieved gentle antibody immobilization through receptor-ligand interactions by constructing a mAb delivery system known as Fcγ receptor 1 (FcγR1)-expressing cell membrane-coated nanoparticles (abbreviated as FcγR1-CMNPs).

View Article and Find Full Text PDF

Identification of the linear Fc-binding epitope on the bovine IgG1 Fc receptor of (boFcγRI) using synthetic peptides.

J Immunol Methods

December 2024

Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou, China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoon-Ose, Yangzhou University, Yangzhou, China. Electronic address:

Background: Bovine IgG1 Fc receptor (boFcγRI) is a homologue to human FcγRI (CD64) that has three extracellular Ig-like domains and can bind bovine IgG1 with high affinity. Identification of the linear epitope for Fc-binding on boFcγRI provides new insights for the IgG-Fcγ interaction and FcγR-targeting drugs development.

Methods: The boFcγRI molecules were expressed on cell surface of the boFcγRI -transfected COS-7 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!