Accumulation and depuration of the cyanobacterial toxin cylindrospermopsin in the freshwater mussel Anodonta cygnea.

Toxicon

Centro Interdisciplinar de Investigação Marinha e Ambiental, Rua dos Bragas, Portugal.

Published: February 2004

Cylindrospermopsin (CYN) is a toxic alkaloid produced by several genera of freshwater cyanobacteria. This compound has been implicated in outbreaks of human sickness and the death of domestic and wild animals. Given that several of the cyanobacterial genera known to produce CYN are common components of the phytoplankton of freshwaters including aquaculture facilities, we studied the accumulation of CYN in the freshwater mussel (swan mussel) Anodonta cygnea. Anodonta were exposed to CYN-producing cultures of the cyanobacterium Cylindrospermopsis raciborskii for 16 days and were found to accumulate the toxin to concentrations up to 2.52 microg g tissue dry weight(-1). There was considerable variation in the concentrations of CYN detected in different parts of the body. At the end of a 2-week accumulation period the distribution of CYN in the body of Anodonta was as follows: haemolymph (68.1%), viscera (23.3%), foot and gonad (7.7%) and mantle (0.9%). No CYN was detected in the gills or adductor muscle of any animals. Following a 2-week depuration period, approximately 50% of the toxin remained in the tissues. Based on the recently derived guideline value for CYN in human drinking water (1 microg l(-1)) and the concentrations of this compound in animal tissues reported here, there is a clear need for the increased monitoring of this compound in organisms grown for human and animal consumption.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxicon.2003.11.022DOI Listing

Publication Analysis

Top Keywords

freshwater mussel
8
mussel anodonta
8
anodonta cygnea
8
cyn detected
8
cyn
7
accumulation depuration
4
depuration cyanobacterial
4
cyanobacterial toxin
4
toxin cylindrospermopsin
4
cylindrospermopsin freshwater
4

Similar Publications

In freshwater lakes and rivers, cyanobacteria belonging to the family Leptolyngbyaceae bore > 1 mm deep into limestone pebbles by dissolving carbonate at the tip of their 3-8 μm-thick filaments. The abundance of these borings decreases downward while it is so high at the rock surface that micrometric debris is formed. Moreover, the disintegrated material on the pebbles' surface can be easily removed, for instance, when pebbles are grinding against each other due to wave or current action or when insect larvae settle and scratch loosened grains from the surface while constructing their cases.

View Article and Find Full Text PDF

Background: Amidst the escalating loss of global biodiversity, freshwater mussels (family Unionidae) have become one of the most imperiled animal groups. Acquiring more biological and phylogenetic information on understudied taxa constitutes a pivotal aspect of conservation biology. Consequently, a comprehensive examination was conducted on Koreosolenaia, Parvasolenaia, and Sinosolenaia from China encompassing morphology, anatomy, distribution, and molecular systematics to provide theoretical support for future species endangerment assessments and biodiversity conservation.

View Article and Find Full Text PDF

Health check-up of a freshwater bivalve exposed to lithium.

Environ Pollut

December 2024

Université de Lorraine, LIEC, CNRS, F-57000, Metz, France. Electronic address:

Lithium (Li) has become essential for energy and digital transitions, especially as a component of rechargeable batteries. Its growing uses worldwide lead to increasing anthropogenic releases of Li into the environment, which is making Li as an emerging contaminant. It is thus critical to evaluate the ecotoxicological impact of Li, which has been poorly studied unlike its human toxicology.

View Article and Find Full Text PDF

The mobilization of rare earth elements (REEs) in aquatic ecosystems is expected to rise significantly due to intensified exploitation, erosion, and climate change. As a result, more attention has been brought to study their environmental fate. However, our ability to assess contamination risks in freshwater organisms remains limited due to scarce data on the composition and accumulation of REEs.

View Article and Find Full Text PDF

Exposure pathways (diet, dissolved or particulate substrate) of rare earth elements to aquatic organisms.

Ecotoxicol Environ Saf

December 2024

School of the Environment, Trent University, Peterborough, Canada; Environmental and Life Science graduate program, Trent University, Peterborough, Canada; Department of Chemistry, Trent University, Peterborough, Canada.

The global extraction and use of rare earth elements (REEs) continue to rise as they are implemented in technologies that improve human and environmental livelihoods. However, the general understanding of transfer processes and fates of REEs in aquatic systems remains limited. Here, we aim to determine the REEs' main exposure pathways, e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!