Interactions of antifungal plant defensins with fungal membrane components.

Peptides

Centre of Microbial and Plant Genetics (CMPG), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium.

Published: November 2003

Plant defensins are small, basic, cysteine-rich peptides that are generally active against a broad spectrum of fungal and yeast species at micromolar concentrations. Some of these defensins interact with fungal-specific lipid components in the plasmamembrane. Structural differences of these membrane components between fungal and plant cells probably account for the selective activity of plant defensins against fungal pathogens and their nonphytotoxic properties. This review will focus on different classes of complex lipids in fungal membranes and on the selective interaction of plant defensins with these complex lipids.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.peptides.2003.09.014DOI Listing

Publication Analysis

Top Keywords

plant defensins
16
defensins fungal
8
membrane components
8
complex lipids
8
plant
5
defensins
5
fungal
5
interactions antifungal
4
antifungal plant
4
fungal membrane
4

Similar Publications

Inappropriate and excessive use of antibiotics is responsible for the rapid development of antimicrobial resistance, which is associated with increased patient morbidity and mortality. There is an urgent need to explore new antibiotics or alternative antimicrobial agents. a commensal microorganism but is also responsible for numerous infections.

View Article and Find Full Text PDF

Plant Antimicrobial Peptides and Their Main Families and Roles: A Review of the Literature.

Curr Issues Mol Biol

December 2024

Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Rio de Janeiro 28013-602, Brazil.

Antimicrobial peptides (AMPs) are constituent molecules of the innate defense system and are naturally produced by all organisms. AMPs are characterized by a relatively low molecular weight (less than 10 kDa) and a variable number of cysteine residues that form disulfide bonds and contribute to the stabilization of the tertiary structure. In addition, there is a wide repertoire of antimicrobial agents against bacteria, viruses, fungi, and protozoa that can provide a large number of prototype peptides for study and biochemical manipulation.

View Article and Find Full Text PDF

Background: Arbuscular mycorrhizal (AM) fungi form a highly adaptable and versatile group of fungi found in natural and man-managed ecosystems. Effector secreted by AM fungi influence symbiotic relationship by modifying host cells, suppressing host defense and promoting infection to derive nutrients from the host. Here, we conducted a reference-based transcriptome sequencing of Funneliformis mosseae BR221 to enhance understanding on the molecular machinery involved in the establishment of interaction between host and AM fungi.

View Article and Find Full Text PDF

Several mungbean (Vigna radiata (L.) Wilczek) cultivars are susceptible to Cercospora leaf spot (CLS) caused by Cercospora canescens Ellis & Martin, and it is necessary to explore resistance sources and understand resistance mechanisms. However, the CLS resistance mechanisms have not yet been explored.

View Article and Find Full Text PDF

Plants are sessile organisms that overcome environmental stress by activating specific metabolic pathways, leading to adaptation and survival. In addition, they recruit beneficial bacterial strains to further improve their performance. As plant-growth-promoting rhizobacteria (PGPR) are able to trigger multiple targets to improve plant fitness, finding effective isolates for this purpose is of paramount importance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!