This investigation is focused on the enhancement of in vitro transfection activity by optimizing cationic lipid and matrix lipid composition of solid lipid nanoparticles (SLN). For this purpose SLN were formulated by using two different matrix lipids and six different cationic detergents. These 12 formulations were tested for physical parameters such as particle size, zeta potential and DNA-binding capacity, and also for their biological properties such as cytotoxicity and in vitro transfection efficiency. The SLN were produced by hot high-pressure homogenization, all formulations were physically stable and showed a highly positive surface charge (+34 to +45 mV). In vitro cytotoxicity measurements on COS-1 cells revealed that cytotoxicity is strongly dependent on the cationic lipid used. SLN made from one-tailed cationic detergents were highly cytotoxic. In contrast the two-tailed cationic lipids were all well tolerated. Transfection activity seems to be determined by both the cationic lipid and the matrix lipid used. Here, the combination of cetylpalmitate and N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride led to significantly higher transfection efficiencies than in all other tested combinations. These results indicate that well tolerated and highly efficient in vitro transfection could be achieved with SLN whenever selecting good combinations of two-tailed cationic lipids and matrix lipids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2003.10.015 | DOI Listing |
J Mater Chem B
January 2025
Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia.
Infections caused by fungal pathogens are a global health problem, and have created an urgent need for new antimicrobial strategies. This report details the synthesis of lipidated 2-vinyl-4,4-dimethyl-5-oxazolone (VDM) oligomers an optimized Cu(0)-mediated reversible-deactivation radical polymerization (RDRP) approach. Cholesterol-Br was used as an initiator to synthesize a library of oligo-VDM (degree of polymerisation = 5, 10, 15, 20, and 25), with an α-terminal cholesterol group.
View Article and Find Full Text PDFThe U.S. opioid epidemic is an extraordinary public health crisis that started in 1990 and significantly accelerated in the last decade.
View Article and Find Full Text PDFACS Omega
January 2025
Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India.
The insertion of β-amino acids and replacement of the amide bond with a urea bond in antimicrobial peptide sequences are promising approaches to enhance the antibacterial activity and improve proteolytic stability. Herein, we describe the synthesis, characterization, and antibacterial activity of short αβ cationic hybrid peptides LA-Orn-βAcc-PEA, ; LA-Lys-βAcc-PEA, ; and LA-Arg-βAcc-PEA, in which a C12 lipid chain is conjugated at the N terminus of peptide through urea bonds. Further, we evaluated all the peptides against both and methicillin-resistant (MRSA) and their multidrug resistant (MDR) clinical isolates.
View Article and Find Full Text PDFOncol Res
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
Background: Hepatocellular carcinoma (HCC) is a health problem due to multi-drug resistance (MDR). Codelivery of multiple oncotherapy in one cargo as chimeric cancer therapy (CCT) is suggested as a solution for MDR. This study aims to engineer chitosan-coated nanostructure lipid carriers (NLCs) loaded with gefitinib (GF) and simvastatin (SV) as CCT for HCC.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University), Puthanampatti, Tamilnadu 621007, India. Electronic address:
This study successfully synthesised and characterised composites combining chitosan (CH), carboxymethyl cellulose (CMC), and various flavonoids (Fla). This innovative approach demonstrates the potential for developing functional materials with antioxidant and food preservation properties. The composites CH-Fla-CMC (1-5) was characterised using advanced techniques such as FT-IR, UV-Vis, XRD, SEM, TEM, and TGA, providing robust data on their structural, morphological, and thermal properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!