Detection of the central cholinergic deficits, a consistent feature of Alzheimer's disease, is essential to allow preventive measures and/or symptomatic treatment already at a very early stage of the disease. The vesicular acetylcholine transporter (VAChT) represents an appropriate target to establish PET radiotracer that are adequate for brain imaging the loss of cholinergic terminals. Here we describe the synthesis and binding characteristics of novel derivatives of vesamicol, known to represent a specific antagonist of VAChT sites. Novel benzyl ether derivatives of vesamicol either 4- or 5-substituted at the cyclohexylring have been synthesized by different regioselective ring opening reactions of a same epoxide precursor. The affinity and selectivity of the novel compounds to VAChT sites were analyzed by competitive radioligand binding studies in rat brain and liver membrane preparations using tritium labeled radioligands. The 4-substituted fluorobenzylether of vesamicol 10b was shown to exhibit a high affinity to VAChT sites (K(i)-value(10b)=10.7+/-1.7 nM), but demonstrated also binding capacities to sigma receptors (K(i-)value(10b)=18.5+/-6.9 nM, [(3)H]DTG; K(i)-value(10b)=30.6+/-9.6 nM, [(3)H]haloperidol). The data suggest the potential of vesamicol derivatives to design appropriate radiotracer for PET imaging of central cholinergic deficits.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2003.12.035DOI Listing

Publication Analysis

Top Keywords

derivatives vesamicol
12
vacht sites
12
benzyl ether
8
ether derivatives
8
vesicular acetylcholine
8
acetylcholine transporter
8
central cholinergic
8
cholinergic deficits
8
vesamicol
5
synthesis novel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!